La Expresión Génica y la Epigenética: Cómo la Dieta y el Entorno Determinan su Salud
Escrito por: Milos Pokimica
Revisado Médicamente Por: Dr. Xiùying Wáng, M.D.
Actualizado el 10 de junio de 2023Principales Conclusiones:
-La expresión génica y la epigenética son procesos dinámicos y reactivos que regulan cómo se activan o desactivan los genes en respuesta a diversos estímulos.
-La dieta y el medio ambiente son dos factores importantes que pueden influir en la expresión génica y la epigenética, al proporcionar nutrientes, sustancias químicas o señales que pueden modificar el ADN o las proteínas que interactúan con él.
– Changes in gene expression can have significant effects on health and disease prevention, by altering the cellular functions, metabolism, inflammation, immunity, and aging of the body.
Introducción.
La mayoría de la gente está familiarizada hasta cierto punto con la ciencia que hay detrás de la genética. Genética nos ayuda a entender cómo funciona la evolución y cómo heredamos rasgos de nuestros padres y nos ayuda en medicina, o antropología comprendiendo cómo evolucionaron nuestros cuerpos desde los homínidos hasta los humanos anatómicamente modernos.
Pero ¿qué pasa con epigenética? ¿Está familiarizado con este término? ¿Sabe que los genes no están grabados en piedra? ¿Sabe cómo podemos cambiar nuestro destino influyendo en nuestros genes? La epigenética es un campo científico nuevo y emergente.
Genética clásica.
Pero, ¿cómo hemos llegado hasta aquí? ¿Cómo hemos descubierto los secretos del ADN y los mecanismos que lo regulan?
Todo empezó con un monje llamado Gregor Mendel, que vivió en el siglo XIX. Tenía curiosidad por saber cómo heredaban las plantas rasgos como el color de las flores y la forma de las semillas. Hizo experimentos con plantas de guisantes, cruzándolas y contando la descendencia. Observó que algunos rasgos seguían patrones simples de herencia, mientras que otros parecían mezclarse o desaparecer. Elaboró unas reglas que explicaban sus observaciones y que hoy conocemos como las leyes de Mendel sobre la herencia. Publicó su trabajo en 1865, pero a nadie le interesó. Murió sin saber que era el padre del campo más importante de la ciencia llamado genética.
A principios del siglo XX. Algunos científicos redescubrieron el trabajo de Mendel y se dieron cuenta de que era genial. También descubrieron que los cromosomas estaban formados por ADN y proteínas y que portaban las unidades de la herencia, a las que llamaron genes. Averiguaron cómo estaban dispuestos los genes en los cromosomas, cómo podían intercambiarse durante la meiosis (división celular) y cómo podían mutar por radiación o sustancias químicas. También aprendieron a cartografiar los genes en los cromosomas utilizando el análisis de ligamiento y las frecuencias de recombinación. Era la época de la genética clásica.
Pero había un problema. La genética clásica no podía explicarlo todo. Por ejemplo, ¿cómo controlaban los genes los rasgos? ¿Cómo interactuaban los genes con el medio ambiente o qué efecto tenía éste en nuestro genoma? ¿Cómo cambiaban los genes con el tiempo y entre generaciones? Estas preguntas condujeron a la creación de una nueva disciplina denominada biología molecular.
Dogma central.
En 1953 James Watson y Francis Crick resolvieron el estructura del ADN. Se trataba de una doble hélice formada por cuatro nucleótidos (A, T, C, G) que se emparejaban entre sí de una forma específica (A con T, C con G). Se dieron cuenta de que esta estructura explicaba cómo el ADN podía almacenar información (la secuencia de nucleótidos), copiarse a sí mismo (separando las hebras y utilizándolas como plantillas) y expresarse (transcribiéndose en ARN y traduciéndose en proteínas). Este trabajo se convirtió en el "dogma central de la biología molecular". Una teoría afirma que la información genética fluye sólo en una dirección, del ADN, al ARN, a la proteína, o del ARN directamente a la proteína. Fue enunciada por primera vez por Francis Crick en 1957 y publicada en 1958.
Pero había otro problema. La biología molecular tampoco podía explicarlo todo.
Por ejemplo, ¿cómo saben las células cuándo y dónde activar y desactivar los genes? Durante el desarrollo, ¿cómo se dividen las células en distintos tipos porque todas tienen el mismo ADN? ¿Cómo recuerdan las células su identidad y su historia, algo importante para la investigación del cáncer? ¿Cómo responden las células a las señales de otras células o del entorno?
Nacimiento de la epigenética.
Estas preguntas condujeron al nacimiento de la epigenética, cuyo objetivo era desvelar los mecanismos que regulan la expresión de los genes sin cambiar la secuencia del ADN.
El término epigenética fue acuñado por Conrad Waddington en 1942, pero tardó décadas en ganar aceptación científica.
La epigenética se basa en la idea de que existen modificaciones químicas en el ADN o en histonas (proteínas que envuelven el ADN) que pueden afectar al modo en que la maquinaria celular accede a los genes y los utiliza. Estas modificaciones pueden ser añadidas o eliminadas por enzimas, dependiendo de diversos factores como el tipo de célula, la fase de desarrollo, las señales ambientales, el estrés, la dieta, etc. (Peixoto et al., 2020). Estos cambios también pueden transmitirse a las células hijas durante la división celular, o incluso a los hijos durante la reproducción.
Esto significa que la epigenética puede influir en rasgos que no están codificados únicamente por el ADN, como el comportamiento, la propensión a enfermedades o el envejecimiento.
La epigenética es uno de los temas más candentes, tanto como lo fue en su día la genética. El problema es que la mayoría de la gente no ha oído hablar de ella, por lo que persiste la vieja creencia de que los genes lo son todo. Tenemos que divulgar las nuevas investigaciones entre un público más amplio que sigue creyendo que los genes están grabados en piedra y que no se puede hacer nada al respecto. La epigenética pone en tela de juicio algunos de los supuestos y dogmas de la genética y la biología molecular. Abre nuevas posibilidades para comprender la vida a un nivel más profundo. También abre nuevas vías para mejorar la medicina y la salud modificando la expresión de los genes.
Lo importante no son los genes, sino la forma en que se expresan.
¿Qué es la expresión génica?
Antes de adentrarnos más científicamente en la epigenética, hablemos de la expresión génica.
La expresión génica se refiere a la frecuencia o el momento en que se crean proteínas a partir de las instrucciones contenidas en los genes. (What Is Epigenetics? | CDC, 2022b).
Las proteínas son los bloques de construcción. Desempeñan muchas funciones, como la construcción de tejidos, la lucha contra las infecciones y la regulación de las hormonas (Pelusa et al., 2022).
Los genes contienen la información necesaria para producir proteínas, pero no las producen por sí mismos. Necesitan la ayuda de otras moléculas, como ARN y enzimas, para leer el código y producir las proteínas. Este proceso se denomina transcripción (Blackwell et al., 2006).
La transcripción no siempre está activada. Puede activarse o desactivarse en función de distintos factores, como señales de otras células, hormonas o nutrientes. Así es como nuestro organismo se adapta a las distintas situaciones.
Por ejemplo, cuando tienes hambre, tu cuerpo activa genes que hacen que las enzimas descompongan los alimentos y liberen energía. Cuando estás lleno, el cuerpo desactiva esos genes y activa los que almacenan el exceso de energía en forma de grasa.
¿Por qué es importante la epigenética?
Epi significa "por encima de" en griego. Lo importante no son los genes, sino lo que expresan.
Todas sus células tienen los mismos genes, pero tienen un aspecto y actúan de forma diferente debido a los cambios epigenéticos. En otras palabras, se trata de una capa adicional de información que controla la regulación de los genes (Hamilton et al., 2011).
Epigenetic modifications can inhibit or activate gene expression. A combination of these modifications plays an important role in “imprinting,” a type of “mark” that determines whether a gene will be expressed or not.
El ADN está formado por combinaciones de nucleótidos. Estas son las famosas letras que la mayoría de la gente conoce: adenina (A), tiamina (T), guanina (G) y citosina (C).
La citosina, por ejemplo, puede modificarse añadiendo un grupo metilo (CH3).
Este proceso se conoce como metilación, y altera la expresión del gen cuya secuencia ha sido alterada. La metilación del ADN suele provocar el silenciamiento del gen. En las circunstancias equivocadas, esto podría ser muy malo si el gen regula la función inmunitaria o alguna otra función importante.
Los cambios epigenéticos pueden producirse incluso antes de nacer, durante el desarrollo y a lo largo de la vida. Algunos cambios epigenéticos son normales y necesarios para tu crecimiento y funcionamiento.
Otros cambios epigenéticos están influidos por el comportamiento y el entorno.
Por ejemplo, lo que come puede afectar a la metilación de sus genes o a la modificación de sus histonas.
Su actividad física puede afectar a la cantidad de ARN no codificante que se produce o a su interacción con el ARN codificante.
Estos cambios epigenéticos forman parte de la evolución y tienen su razón de ser, pero también pueden tener efectos positivos o negativos en la salud.
Algunos cambios epigenéticos, por ejemplo, pueden mejorar nuestro sistema inmunitario activando genes que combaten la inflamación o el cáncer.
Otros cambios epigenéticos pueden aumentar el riesgo de enfermedades al desactivar genes que regulan el metabolismo o el sistema inmunitario (Fanucchi et al, 2021); (Surace et al., 2019).
Esta es una fuerza motriz de la adaptación y la evolución. Si quiere una prueba de la evolución y de cómo funciona en tiempo real y cómo evolucionan los organismos, es ésta. Esta es la razón por la que los cambios epigenéticos también pueden heredarse de una generación a otra. Por ejemplo, si sus abuelos estuvieron expuestos a toxinas, mutágenos o factores estresantes y esa exposición provocó cambios epigenéticos en su ADN o en sus espermatozoides u óvulos, esos cambios podrían transmitirse a usted y afectar a su expresión génica (Denhardt et al., 2018).
Tener un entorno contaminado y toxinas por todas partes no sólo afectará a tu ADN, sino también al de tus hijos (de Magalhães-Barbosa et al., 2022).
Cambios epigenéticos y sus efectos en la salud.
La siguiente tabla ilustra los principales factores que influyen en la expresión génica y los cambios epigenéticos. Hay más factores, pero lo que puede llevarse a casa de esta tabla es el hecho de que en cada fila los factores que influyen en el riesgo son la dieta, el estrés y la exposición a toxinas.
Cambios epigenéticos | Efectos sobre la salud | Fuentes |
Metilación del ADN | A process that adds methyl groups to DNA bases, affecting gene expression. Environmental variables such as food, stress, and exposición a la toxicidad pueden alterar la metilación del ADN. La metilación del ADN puede afectar a diversos aspectos de la salud, como el riesgo de cáncer, la función inmunitaria y el envejecimiento. | Cavalli et al., 2019 |
Modificaciones de las histonas | Proceso que altera la estructura de las histonas, las proteínas que envuelven el ADN. Las modificaciones de las histonas pueden afectar al empaquetamiento del ADN, afectando a la expresión génica. Las modificaciones de las histonas pueden verse influidas por factores ambientales como la dieta, el estrés y la exposición a toxinas. Las modificaciones de las histonas pueden afectar a varios aspectos de la salud, como el riesgo de cáncer, la función inmunitaria y el envejecimiento. | Cavalli et al., 2019 |
ARN no codificante | ARN que no codifica proteínas. Factores ambientales como la dieta, el estrés y la exposición a toxinas pueden afectar al ARN no codificante. El ARN no codificante puede influir en muchos aspectos de la salud, como el riesgo de cáncer, la función inmunológica y el envejecimiento. | Cavalli et al., 2019 |
Infecciones | Los gérmenes pueden cambiar tu epigenética para debilitar tu sistema inmunitario. Esto ayuda al germen a sobrevivir. Por ejemplo: Mycobacterium tuberculosis causa la tuberculosis. La tuberculosis era y aún puede ser una enfermedad mortal porque puede alterar la metilación del ADN de las células inmunitarias, haciendo así que el sistema inmunitario sea menos eficaz para combatir la infección. | What Is Epigenetics? | CDC, 2022b |
Ejemplos de cambios epigenéticos y sus efectos en el riesgo de cáncer.
El cáncer es una enfermedad compleja en la que intervienen miles de mutaciones diferentes que se van acumulando y que implica tanto cambios en el genoma como en el epigenoma (Brena et al., 2007), (Shen et al., 2013). Puedes tener una predisposición genética a que te den miedo tus padres, pero eso es sólo una parte de todo el cuadro.
Esa predisposición genética al cáncer en realidad se activa dependiendo de la expresión de los genes y la expresión de los genes depende sobre todo de una dieta (Hullar et al., 2014), y medio ambiente (Abdul et al., 2017).
Los cambios epigenéticos pueden activar o desactivar genes implicados en el crecimiento celular, la muerte celular o la respuesta inmunitaria. Estos cambios pueden afectar al riesgo general de desarrollar cáncer o de responder a su tratamiento. Por eso tenemos una epidemia de cáncer en la que una de cada cuatro personas en las sociedades occidentales con una dieta americana estándar morirán de ello. La causa no son los genes malos, sino la expresión genética.
He aquí algunos ejemplos de cambios epigenéticos y sus efectos sobre el riesgo de cáncer:
- La metilación del ADN impide que las proteínas que leen el gen accedan a él, lo que básicamente lo desactiva. La metilación del ADN puede desactivar genes que suprimen tumores o reparan daños en el ADN, lo que básicamente desactiva el sistema inmunitario. Por ejemplo, tener una mutación en el gen BRCA1 que impide que funcione correctamente aumenta la probabilidad de padecer cáncer de mama y otros tipos de cáncer. Sin embargo, si este gen también está metilado, lo más probable es que usted muera porque su sistema inmunitario está desactivado. La metilación puede aumentar aún más el riesgo de cáncer y hacerlo más agresivo (Catteau et al., 2002), (Prajzendanc et al., 2020).
- La modificación de las histonas se produce cuando se añaden o eliminan grupos químicos de las histonas, unas proteínas que envuelven el ADN para formar una estructura llamada cromatina. Dependiendo del tipo y la ubicación de los grupos químicos, la modificación de las histonas puede hacer que la cromatina esté más apretada o menos apretada, afectando a la cantidad de ADN que queda expuesto u oculto a las proteínas que lo leen. La modificación de las histonas puede afectar a los genes que regulan el ciclo celular, Por ejemplo, tener una mutación en el gen p53 que le impida funcionar correctamente le hace más propenso a padecer diversos tipos de cáncer. Sin embargo, si este gen también está modificado por histonas, puede aumentar aún más su riesgo de cáncer o hacer que su cáncer sea más resistente al tratamiento (Yue et al., 2017).
- ARN no codificante: Se produce cuando unas moléculas denominadas ARN no codificante se unen al ARN codificante, que se utiliza para fabricar proteínas. El ARN no codificante puede ayudar a descomponer el ARN codificante o reclutar moléculas que modifican las histonas, afectando a la expresión génica. El ARN no codificante puede afectar a genes que controlan la diferenciación celular, la invasión o la metástasis. Por ejemplo, tener una mutación en el gen KRAS que impida su correcto funcionamiento aumenta la probabilidad de padecer cáncer colorrectal. Sin embargo, si este gen también está regulado por ARN no codificante, puede aumentar aún más su riesgo de cáncer o hacer que su cáncer sea más difícil de tratar (Saliani et al., 2022).
Cambios epigenéticos y sus efectos en función de la dieta y la nutrición
Componentes de la dieta | Cambios epigenéticos | Fuentes |
Antioxidantes | Los antioxidantes son moléculas capaces de neutralizar los radicales libresque pueden dañar el ADN y las histonas. Los antioxidantes pueden modular los cambios epigenéticos afectando a la metilación del ADN y a las modificaciones de las histonas. | Beetch et al., 2020 |
Folato | El folato es una vitamina B que interviene en la síntesis del ADN y el ARN. El folato puede afectar a los cambios epigenéticos al proporcionar grupos metilo para la metilación del ADN. La deficiencia de folato puede alterar la metilación del ADN y aumentar el riesgo de diversas enfermedades, como el cáncer, los defectos del tubo neural y el deterioro cognitivo. | Crider et al., 2012 |
Restricción calórica | La restricción calórica es una intervención dietética que reduce la ingesta de calorías sin causar desnutrición mediante la regulación a la baja de diversos factores, como la inflamación, el estrés oxidativo y la tasa metabólica basal. La restricción calórica puede afectar a los cambios epigenéticos al alterar la expresión y la actividad de las enzimas implicadas en la metilación del ADN y las modificaciones de las histonas. | Gensous et al., 2019 |
Fibra | La fibra es un tipo de carbohidrato que no es digerido por las enzimas humanas pero que puede ser fermentado por las bacterias intestinales. La fibra puede afectar a los cambios epigenéticos al influir en la composición y función de la microbiota intestinal, que puede producir metabolitos que modulan la metilación del ADN y las modificaciones de las histonas. | Choi et al., 2010 |
Probióticos | Los probióticos pueden afectar a los cambios epigenéticos al influir en la composición y función de la microbiota intestinal, que puede producir metabolitos que modulen la metilación del ADN y las modificaciones de las histonas. Los probióticos también pueden modular la expresión de genes implicados en la inflamación, la inmunidad y el metabolismo. | (Borzabadi et al., 2018), (Ye et al., 2017) |
Prebióticos | Los prebióticos son hidratos de carbono no digeribles que estimulan selectivamente el crecimiento y/o la actividad de las bacterias intestinales beneficiosas. Los prebióticos pueden afectar a los cambios epigenéticos al influir en la composición y función de la microbiota intestinal, que puede producir metabolitos que modulan la metilación del ADN y las modificaciones de las histonas. Los prebióticos también pueden modular la expresión de genes implicados en la inflamación, la inmunidad y el metabolismo. | Ye et al., 2017 |
Antioxidants’ effect on gene expression.
He aquí algunos ejemplos. No se trata de una lista completa de todos los efectos, sólo de un ejemplo:
- Los antioxidantes pueden prevenir o invertir la metilación del ADN. La metilación del ADN puede producirse al exponerse a radicales libres o toxinas. Los antioxidantes pueden bloquear este proceso o eliminar el grupo metilo, restaurando la función del gen.
- Los antioxidantes pueden modular las modificaciones de las histonas. Los antioxidantes pueden influir en las enzimas que realizan estas modificaciones, cambiando la estructura de la cromatina.
- Los antioxidantes pueden regular el ARN no codificante. Los antioxidantes pueden afectar a la producción o actividad del ARN no codificante, alterando la regulación génica.
- Los antioxidantes pueden prevenir o reparar daños en el ADN y restablecer la expresión normal de los genes, evitando o ralentizando el desarrollo del cáncer.
En la tabla siguiente se muestran antioxidantes seleccionados y sus efectos sobre la expresión génica. No es una lista completa, sólo algunos ejemplos que han sido investigados por los científicos. Existen miles de fitoquímicos diferentes y debería o no ser capaz de investigarlos todos. Debe esforzarse por aumentar la valor ORAC global de su dieta a través de la nutrición y no seguir la ruta de los antioxidantes suplementarios individuales. Los fitoquímicos actúan de forma sinérgica como un complejo de sustancias químicas procedentes de fuentes de alimentos integrales, donde 2 más 2 es igual a 15. En la tabla, he enumerado algunos antioxidantes sólo como ejemplo.
Antioxidante | Efecto sobre la epigenética | Fuente |
Curcumina | La curcumina es un polifenol antiinflamatorio, antioxidante y anticancerígeno producido a partir de la cúrcuma. La curcumina puede inhibir las metiltransferasas de ADN (DNMT) y las desacetilasas de histonas (HDAC), provocando la reactivación de genes supresores de tumores y la supresión de oncogenes. La curcumina también puede modificar la estructura de la cromatina y la expresión de los genes al inducir la acetilación y metilación de las histonas. La curcumina puede modular los microARN (miARN) y los ARN no codificantes largos (lncARN), ambos dirigidos a genes implicados en la inflamación, la apoptosis, el ciclo celular, la invasión y la metástasis. | Bhattacharjee et al., 2020 |
Resveratrol | El resveratrol es un polifenol natural que se encuentra en las uvas, el vino tinto, las bayas y los cacahuetes y tiene efectos antioxidantes, antiinflamatorios y anticancerígenos. El resveratrol puede inhibir las DNMT y las HDAC, lo que provoca la desmetilación y reactivación de genes supresores de tumores y la regulación a la baja de oncogenes. El resveratrol también puede inducir la acetilación y metilación de histonas, lo que afecta a la estructura de la cromatina y la expresión génica. El resveratrol puede regular miRNAs y lncRNAs que se dirigen a genes implicados en el estrés oxidativo, la inflamación, la apoptosis, la autofagia, la senescencia, la angiogénesis y la metástasis. | Griñán-Ferré et al., 2020 |
Apigenina | La apigenina es un flavonoide natural derivado de las flores de manzanilla, las naranjas, el perejil, el apio y otras fuentes naturales que tiene propiedades antioxidantes, antiinflamatorias y anticancerígenas. La apigenina puede inhibir las DNMT y las HDAC, lo que provoca la desmetilación y reactivación de genes supresores de tumores y la regulación a la baja de oncogenes. La apigenina también puede inducir la acetilación y metilación de histonas, alterando la estructura de la cromatina y la expresión génica. La apigenina puede regular los miARN que se dirigen a genes implicados en el ciclo celular, la apoptosis, la invasión, la metástasis, la angiogénesis y el tallo. | Bhattacharjee et al., 2020 |
Sulforafano | El sulforafano es un isotiocianato natural derivado de las verduras crucíferas como el brócoli, El sulforafano es un antioxidante, antiinflamatorio y anticancerígeno. El sulforafano puede inhibir las DNMT y las HDAC, lo que provoca la desmetilación y reactivación de genes supresores de tumores y la regulación a la baja de oncogenes. El sulforafano también puede inducir la acetilación y metilación de histonas, alterando la estructura de la cromatina y la expresión génica. El sulforafano puede regular los miARN y los lncARN que se dirigen a genes implicados en la inflamación, la apoptosis, el ciclo celular, la invasión y la metástasis. | Bhattacharjee et al., 2020 |
Ácido ursólico | El ácido ursólico es un triterpenoide pentacíclico natural que se encuentra en varias frutas, hierbas y especias y tiene efectos antioxidantes, antiinflamatorios y anticancerígenos. El ácido ursólico puede inhibir las DNMT y las HDAC, lo que provoca la desmetilación y reactivación de genes supresores de tumores y la regulación a la baja de oncogenes. El ácido ursólico también puede inducir la acetilación y metilación de histonas, afectando a la estructura de la cromatina y a la expresión génica. El ácido ursólico puede regular los miARN que se dirigen a genes implicados en el ciclo celular, la apoptosis, la invasión, la metástasis, la angiogénesis y el tallo. | Bhattacharjee et al., 2020 |
Allicina | La alicina es un compuesto natural de azufre derivado de ajo que tiene efectos antimicrobianos, antioxidantes, antiinflamatorios y anticancerígenos. La alicina puede inhibir la actividad de la ADN girasa en las bacterias, lo que provoca la inhibición de la replicación y la transcripción del ADN. La alicina también puede oxidar los residuos de cisteína de las proteínas, afectando a su estructura y función. La alicina puede regular los miARN dirigidos a genes implicados en el ciclo celular, la apoptosis, la invasión, la metástasis, la angiogénesis y el crecimiento. | Chhabria et al., 2015 |
Hay muchos más antioxidantes que pueden afectar a la expresión génica. Si quiere saber más, puede buscar artículos correlacionados.
Es posible que también se pregunte de dónde puede obtener antioxidantes. La buena noticia es que se encuentran sobre todo en las plantas y que hay plantas muy ricas en contenido antioxidante. Conozca sus valores ORAC.
Efectos del folato en la expresión génica.
El folato es una vitamina B que interviene en la síntesis de ADN y ARN. El folato es necesario para que las células crezcan y se dividan correctamente. Puedes obtener folato de alimentos como las verduras de hoja verde, las judías, los frutos secos, los huevos y los cereales enriquecidos. El problema es que éste es uno de los deficiencias en la dieta estadounidense estándar. Las personas que siguen una dieta integral a base de plantas no suelen tener carencias de folato y no necesitan un suplemento adicional de ácido fólico.
He aquí algunos ejemplos:
- El folato proporciona grupos metilo (un grupo de carbono) para la metilación del ADN (Crider et al., 2012). El folato es una de las principales fuentes de grupos metilo para este proceso. La carencia de folato puede alterar la metilación del ADN y provocar una expresión génica anormal.
- El folato afecta al cierre del tubo neural. El tubo neural es la estructura que forma el cerebro y la médula espinal en el embrión. El tubo neural necesita cerrarse correctamente para un desarrollo normal. El folato es esencial para este proceso porque afecta a la expresión de los genes implicados en el cierre del tubo neural (Saitsu et al., 2017). La carencia de folato puede impedir el cierre del tubo neural y causar defectos congénitos como la espina bífida.
- El folato es importante para la función cognitiva porque afecta a la expresión de genes implicados en el desarrollo y la función cerebrales. La carencia de folato puede deteriorar la función cognitiva y aumentar el riesgo de demencia.
Estos son algunos de los efectos del folato en la epigenética y por qué son importantes para tu salud y desarrollo. Quizá te preguntes cuánto folato necesitas y de dónde puedes obtenerlo. Aquí tienes algunos consejos:
- La CDR de folato es de 400 microgramos para los adultos y de 600 mcg para las mujeres embarazadas.
- Puedes obtener folato de alimentos como las verduras de hoja verde, las judías, los frutos secos, los huevos y los cereales enriquecidos. También puedes tomar un suplemento si tienes una deficiencia o una mayor necesidad de folato.
- Hay que evitar tomar demasiado folato porque puede enmascarar una vitamina deficiencia de vitamina B12 o interferir con algunos medicamentos.
- o interferir con algunos medicamentos. Necesitamos folato pero los suplementos están hechos de ácido fólico. Nuestro hígado, a diferencia del hígado de las ratas en el modelo animal, es incapaz de convertir más de 400mg de ácido fólico en folato en un día. Por eso la mayoría de los suplementos nunca superan los 400mg de ácido fólico.
Efectos de la restricción calórica en la expresión génica.
La restricción calórica consiste en reducir la ingesta de calorías sin provocar desnutrición. La restricción calórica puede afectar a la cantidad de ARN no codificante que se produce o a su interacción con el ARN codificante (Abraham et all., 2017). La restricción calórica también puede regular el ritmo circadiano de la expresión génica en diferentes órganos y tejidos (Patel et al., 2016).
Estos efectos de la restricción calórica sobre la epigenética pueden tener diversos beneficios para la salud y el envejecimiento. Por ejemplo:
- La restricción calórica puede retrasar el envejecimiento modulando diversas vías, como la inflamación (Gabandé-Rodríguez et al., 2019), estrés oxidativo, metabolismo y autofagia (Bagherniya et al., 2018).
- La restricción calórica también puede prolongar la esperanza de vida al aumentar la expresión de genes que protegen contra el daño y la muerte celular (Komatsu T et al., 2019).
En nuestra evolución normal, nos vimos obligados a restricciones calóricas en nuestro En nuestra evolución normal, nos vimos obligados a restricciones calóricas en nuestro. Our body’s response to restriction is to repair itself by destroying bad or mutated or precancerous cells first for energy and by slowing down metabolism. When you slow down your metabolism you burn less energy, have lower oxidative stress and you live longer. And calorie restriction also has effects on gene expression. Our body is used to havening it and expects it as a normal part of life. Lacking autophagy directly leads to cancer risk. A una dieta basada en alimentos vegetales integrales es naturalmente más propensa a inducir una restricción calórica al aportar menos calorías que una dieta americana estándar (DAE) sin dejar de satisfacer las necesidades nutricionales (Greger, 2020). Por otro lado, el TAE provoca un exceso de calorías debido al consumo de aceite y azúcar y de alimentos muy apetecibles, lo que puede perjudicar la expresión genética y aumentar el riesgo de enfermedad.
Efectos de la fibra en la expresión génica.
La fibra es un tipo de hidrato de carbono que no es digerido directamente por nuestras enzimas, sino que va a parar al colon, donde es fermentado por las bacterias intestinales. La fibra puede ayudarte a regular la digestión, reducir el colesterol y prevenir el estreñimiento.
Las bacterias que fermentan la fibra son simbióticas y buenas para nuestro sistema inmunitario y nuestro organismo, a diferencia de las bacterias no probióticas que putrefactan la carne. Esta bacteria carnívora putrefacta la carne que has comido durante horas en el colon causando inflamación. La carne es la carne y la suya también es sabrosa.
Puedes obtener fibra de alimentos como frutas, verduras, cereales, legumbres y frutos secos.
He aquí algunos ejemplos:
- La fibra puede afectar a la composición y función de la microbiota intestinal al proporcionar alimento a las bacterias probióticas y estimular su crecimiento y actividad frente a las bacterias no probióticas que se alimentan de carne (Makki et al., 2018).
- La fibra afecta a los metabolitos producidos por la microbiota intestinal. Los metabolitos son las sustancias que produce o consume la microbiota intestinal. Pueden entrar en el torrente sanguíneo y afectar a los órganos y tejidos. La fibra puede afectar al tipo y la cantidad de estos metabolitos producidos por la microbiota intestinal estimulando las bacterias probióticas y regulando a la baja los procesos metabólicos de las bacterias no probióticas que se alimentan de carne en el colon (Makki et al., 2018).
- Estos metabolitos pueden afectar a la regulación epigenética modulando la disponibilidad o la actividad de donantes químicos o enzimas que controlan la metilación del ADN y las modificaciones de las histonas. Estos cambios epigenéticos pueden alterar la expresión de genes implicados en la inflamación, la inmunidad y el metabolismo.
- La fibra puede proteger contra la obesidad y la diabetes modulando la expresión de genes implicados en la homeostasis de la glucosa, el metabolismo de los lípidos y el gasto energético.
- La fibra puede mejorar la función inmunitaria. La inflamación crónica puede ser consecuencia de un desequilibrio de la microbiota intestinal o de un deterioro de la función de barrera del intestino. Fiber can improve immune function and prevent infections by modulating the expression of genes involved in inflammation, immunity, and barrier function and by downregulating the activity and number of non-probiotic bacteria in the microbiota colony. Fiber can also stimulate the production of antibodies and cytokines that help fight off germs.
La ingesta dietética recomendada (IDR) de fibra es de 25 gramos al día para las mujeres y de 38 gramos al día para los hombres. Esto es sólo la IDR para la SAD. Desde un punto de vista antropológico, nuestros antepasados homínidos consumían mucho más que eso. Una regla con la fibra es que más suele ser mejor. El problema es que no queremos hinchazón, gases y un aumento constante de las deposiciones. Tampoco nos gusta la textura extraña de la fibra sin sabor, así que preferimos no comerla.
En el siguiente vídeo, el doctor Oded Rechavi, catedrático de neurobiología de la Universidad de Tel Aviv y experto en cómo se heredan los genes, cómo las experiencias moldean los genes y, sorprendentemente, cómo algunos recuerdos de experiencias pueden transmitirse a través de los genes a la descendencia. Habla de sus investigaciones, que ponen en tela de juicio los postulados de la herencia genética, y de la importancia de estos hallazgos para comprender procesos biológicos y psicológicos clave como el metabolismo, el estrés y los traumas. Describe la historia de la exploración científica de la "heredabilidad de los rasgos adquiridos" y cómo la epigenética y la biología del ARN pueden explicar en parte el paso de ciertos recuerdos basados en la experiencia.
Conclusión:
Se trata de un tema muy amplio que está en la primera línea de la investigación científica de las dos últimas décadas. He intentado hacer un resumen en este artículo antes de adentrarnos en algunos escenarios concretos en artículos correlativos.
Estos son sólo algunos ejemplos de cambios epigenéticos y sus efectos sobre el riesgo de cáncer. Hay muchos más factores que pueden provocar cambios epigenéticos, como el tabaquismo, el ejercicio, el estrés, las drogas, la contaminación o los traumatismos.
La conclusión es que tus genes no son fijos. Puedes cambiarlos con tus elecciones y necesitas elegir una dieta rica en antioxidantes, y fibra, evitando la bioacumulación de mutágenos y toxinas en la cadena alimentaria. Necesitas evitar los tipos de dietas hipercalóricas y densas en nutrientes e incorporar la restricción calórica con el ayuno intermitente y evitar sobreexigir tu sistema endocrino con una ingesta excesiva de proteínas. Existe un alto nivel de correlation between overall cancer risk and chronically elevated IGF-1 levels (debido a una dieta SAD dominada por proteínas de alta calidad).
Así que tome decisiones inteligentes que protejan su expresión genética y reduzcan su riesgo de cáncer. Mi consejo es que no espere cincuenta años más para cambiar las recomendaciones, como hicimos con el tabaco. Usted tiene el poder de cambiar no sólo sus genes, sino también los de sus hijos.
- La genética clásica no podía explicarlo todo, lo que llevó a la creación de la biología molecular.
- La epigenética desafió supuestos y dogmas de la genética y la biología molecular.
- La epigenética expone los mecanismos que regulan la expresión de los genes sin cambiar la secuencia del ADN.
- Lo importante no son los genes, sino la forma en que se expresan.
- Las modificaciones químicas del ADN o las histonas pueden afectar al acceso a los genes y a su utilización.
- Las enzimas pueden añadir o eliminar modificaciones en función de diversos factores.
- Los cambios pueden transmitirse a las células hijas o incluso a los hijos durante la reproducción.
- La epigenética puede influir en rasgos no codificados por el ADN de forma independiente, como el comportamiento, la propensión a enfermedades y el envejecimiento.
- La expresión génica se refiere a la frecuencia o el momento en que se crean proteínas a partir de las instrucciones contenidas en los genes.
- La transcripción puede activarse o desactivarse en función de distintos factores, lo que permite al organismo adaptarse a diferentes situaciones.
- El cáncer implica miles de mutaciones en el genoma y el epigenoma.
- La predisposición genética es sólo un aspecto del cáncer.
- La expresión génica, influida por la dieta y el entorno, puede activar la predisposición genética al cáncer.
- Los cambios epigenéticos pueden afectar al riesgo de desarrollar cáncer y a la respuesta al tratamiento.
- Los cambios epigenéticos pueden afectar al riesgo de desarrollar cáncer y a la respuesta al tratamiento.
- La metilación del ADN bloquea el acceso a los genes, apagándolos y desactivando el sistema inmunitario.
- La metilación puede aumentar el riesgo de cáncer y hacerlo más agresivo.
- La modificación de las histonas puede afectar a genes que regulan el ciclo celular, la apoptosis o la angiogénesis.
- Las mutaciones en varios genes aumentan el riesgo de cáncer, pero la regulación adicional a través de la metilación, la modificación de las histonas o el ARN no codificante puede aumentar aún más el riesgo o dificultar el tratamiento del cáncer.
- Los antioxidantes pueden prevenir o invertir la metilación del ADN causada por radicales libres o toxinas.
- Los antioxidantes pueden modular las modificaciones de las histonas influyendo en las enzimas y cambiando la estructura de la cromatina.
- Los antioxidantes pueden regular el ARN no codificante, alterando la regulación de los genes.
- Los antioxidantes pueden prevenir o reparar daños en el ADN y restablecer la expresión normal de los genes, frenando el desarrollo del cáncer.
- El folato proporciona grupos metilo para la metilación del ADN.
- La carencia de folato puede alterar la metilación del ADN y provocar una expresión génica anormal.
- La carencia de folato puede deteriorar la función cognitiva y aumentar el riesgo de demencia.
- El ácido fólico no es lo mismo que el folato.
- La restricción calórica retrasa el envejecimiento y modula la inflamación, el estrés oxidativo, el metabolismo y las vías de autofagia.
- La restricción calórica aumenta la expresión de genes que protegen contra el daño y la muerte celular.
- La restricción calórica fue una parte normal de nuestra evolución debido a la escasez.
- La restricción calórica fue una parte normal de nuestra evolución debido a la escasez.
- Una dieta integral basada en plantas induce de forma natural la restricción calórica sin dejar de satisfacer las necesidades nutricionales.
- Una dieta integral basada en plantas induce de forma natural la restricción calórica sin dejar de satisfacer las necesidades nutricionales. alimentos muy apetecibles.
- La fibra afecta a la microbiota intestinal estimulando las bacterias probióticas y reduciendo el número de bacterias no probióticas que se alimentan de carne.
- Los metabolitos producidos por la microbiota intestinal pueden afectar a órganos y tejidos, y la fibra puede influir en el tipo y la cantidad de estos metabolitos.
- La fibra puede modular la regulación epigenética y alterar la expresión de genes implicados en la inflamación, la inmunidad y el metabolismo.
- La fibra puede proteger contra la obesidad y la diabetes modulando la expresión de genes implicados en la homeostasis de la glucosa, el metabolismo de los lípidos y el gasto energético.
- La fibra puede mejorar la función inmunitaria modulando la expresión de genes implicados en la inflamación, la inmunidad y la función de barrera, y reduciendo el número de bacterias no probióticas.
- La fibra puede estimular la producción de anticuerpos y citoquinas para combatir los gérmenes.
- Más fibra suele ser mejor.
- Un exceso de fibra puede provocar hinchazón, gases y aumento de las deposiciones.
- Hay muchos factores que pueden provocar cambios epigenéticos, como el tabaco, el ejercicio, el estrés, las drogas, la contaminación o los traumatismos.
- Tus genes no son fijos y pueden cambiar con tus decisiones.
- Se recomienda una dieta rica en antioxidantes y fibra y evitar el bioacumulación de mutágenos y toxinas en una cadena alimentaria.
- Deben evitarse las dietas hipercalóricas y pobres en nutrientes.y se recomienda la restricción calórica con ayuno intermitente.
- Una ingesta excesiva de proteínas puede sobreexpresar el IGF1 y aumentar el riesgo de cáncer.
Preguntas Frecuentes
Referencias:
- Peixoto, P., Cartron, P. F., Serandour, A. A., & Hervouet, E. (2020). From 1957 to Nowadays: A Brief History of Epigenetics. Revista internacional de ciencias moleculares, 21(20), 7571. https://doi.org/10.3390/ijms21207571
- What is Epigenetics? | CDC. (2022, August 15). Centers for Disease Control and Prevention. https://www.cdc.gov/genomics/disease/epigenetics.htm
- LaPelusa, A., & Kaushik, R. (2022). Physiology, Proteins. In StatPearls. StatPearls Publishing. [PubMed]
- Blackwell, T. K., & Walker, A. K. (2006). Transcription mechanisms. WormBook : la revista en línea de biología de C. elegans, 1–16. https://doi.org/10.1895/wormbook.1.121.1
- Hamilton J. P. (2011). Epigenetics: principles and practice. Enfermedades digestivas (Basilea, Suiza), 29(2), 130–135. https://doi.org/10.1159/000323874
- Fanucchi, S., Domínguez-Andrés, J., Joosten, L. A. B., Netea, M. G., & Mhlanga, M. M. (2021). The Intersection of Epigenetics and Metabolism in Trained Immunity. Inmunidad, 54(1), 32–43. https://doi.org/10.1016/j.immuni.2020.10.011
- Surace, A. E. A., & Hedrich, C. M. (2019). The Role of Epigenetics in Autoimmune/Inflammatory Disease. Fronteras de la inmunología, 10, 1525. https://doi.org/10.3389/fimmu.2019.01525
- Denhardt, D. T. (2018). Effect of stress on human biology: Epigenetics, adaptation, inheritance, and social significance. Journal of Cellular Physiology, 233(3), 1975–1984. https://doi.org/10.1002/jcp.25837
- de Magalhães-Barbosa, M. C., Prata-Barbosa, A., & da Cunha, A. J. L. A. (2022). Toxic stress, epigenetics and child development. Revista de pediatría, 98 Suppl 1(Suppl 1), S13–S18. https://doi.org/10.1016/j.jped.2021.09.007
- Cavalli, G., & Heard, E. (2019). Advances in epigenetics link genetics to the environment and disease. Naturaleza, 571(7766), 489–499. https://doi.org/10.1038/s41586-019-1411-0
- Brena, R. M., & Costello, J. F. (2007). Genome-epigenome interactions in cancer. Genética molecular humana, 16 Spec No 1, R96–R105. https://doi.org/10.1093/hmg/ddm073
- Shen, H., & Laird, P. W. (2013). Interplay between the cancer genome and epigenome. Celda, 153(1), 38–55. https://doi.org/10.1016/j.cell.2013.03.008
- Hullar, M. A., & Fu, B. C. (2014). Diet, the gut microbiome, and epigenetics. Revista del cáncer (Sudbury, Mass.), 20(3), 170–175. https://doi.org/10.1097/PPO.0000000000000053
- Abdul, Q. A., Yu, B. P., Chung, H. Y., Jung, H. A., & Choi, J. S. (2017). Epigenetic modifications of gene expression by lifestyle and environment. Archivos de investigación farmacológica, 40(11), 1219–1237. https://doi.org/10.1007/s12272-017-0973-3
- Catteau, A., & Morris, J. S. (2002). BRCA1 methylation: a significant role in tumour development? Seminars in Cancer Biology, 12(5), 359–371. https://doi.org/10.1016/s1044-579x(02)00056-1
- Prajzendanc, K., Domagała, P., Hybiak, J., Ryś, J., Huzarski, T., Szwiec, M., Tomiczek-Szwiec, J., Redelbach, W., Sejda, A., Gronwald, J., Kluz, T., Wiśniowski, R., Cybulski, C., Łukomska, A., Białkowska, K., Sukiennicki, G., Kulczycka, K., Narod, S. A., Wojdacz, T. K., Lubiński, J., … Jakubowska, A. (2020). BRCA1 promoter methylation in peripheral blood is associated with the risk of triple-negative breast cancer. Revista internacional del cáncer, 146(5), 1293–1298. https://doi.org/10.1002/ijc.32655
- Yue, X., Zhao, Y., Xu, Y., Zheng, M., Feng, Z., & Hu, W. (2017). Mutant p53 in Cancer: Accumulation, Gain-of-Function, and Therapy. Revista de biología molecular, 429(11), 1595–1606. https://doi.org/10.1016/j.jmb.2017.03.030
- Saliani, M., Jalal, R., & Javadmanesh, A. (2022). Differential expression analysis of genes and long non-coding RNAs associated with KRAS mutation in colorectal cancer cells. Informes científicos, 12(1), 7965. https://doi.org/10.1038/s41598-022-11697-5
- Beetch, M., Harandi-Zadeh, S., Shen, K., Lubecka, K., Kitts, D. D., O’Hagan, H. M., & Stefanska, B. (2020). Dietary antioxidants remodel DNA methylation patterns in chronic disease. Revista británica de farmacología, 177(6), 1382–1408. https://doi.org/10.1111/bph.14888
- Crider, K. S., Yang, T. P., Berry, R. J., & Bailey, L. B. (2012). Folate and DNA methylation: a review of molecular mechanisms and the evidence for folate’s role. Avances en nutrición (Bethesda, Md.), 3(1), 21–38. https://doi.org/10.3945/an.111.000992
- Gensous, N., Franceschi, C., Santoro, A., Milazzo, M., Garagnani, P., & Bacalini, M. G. (2019). The Impact of Caloric Restriction on the Epigenetic Signatures of Aging. Revista internacional de ciencias moleculares, 20(8), 2022. https://doi.org/10.3390/ijms20082022
- Choi, S. W., & Friso, S. (2010). Epigenetics: A New Bridge between Nutrition and Health. Avances en nutrición (Bethesda, Md.), 1(1), 8–16. https://doi.org/10.3945/an.110.1004
- Borzabadi, S., Oryan, S., Eidi, A., Aghadavod, E., Daneshvar Kakhaki, R., Tamtaji, O. R., Taghizadeh, M., & Asemi, Z. (2018). The Effects of Probiotic Supplementation on Gene Expression Related to Inflammation, Insulin and Lipid in Patients with Parkinson’s Disease: A Randomized, Double-blind, PlaceboControlled Trial. Archivos de medicina iraní, 21(7), 289–295. [PubMed]
- Ye, J., Wu, W., Li, Y., & Li, L. (2017). Influences of the Gut Microbiota on DNA Methylation and Histone Modification. Enfermedades y ciencias digestivas, 62(5), 1155–1164. https://doi.org/10.1007/s10620-017-4538-6
- Bhattacharjee, S., & Dashwood, R. H. (2020). Epigenetic Regulation of NRF2/KEAP1 by Phytochemicals. Antioxidantes (Basilea, Suiza), 9(9), 865. https://doi.org/10.3390/antiox9090865
- Griñán-Ferré, Christian, et al. "Antioxidantes dietéticos, epigenética y envejecimiento cerebral: A Focus on Resveratrol". Oxidative Stress and Dietary Antioxidants in Neurological Diseases, editado por Colin R. Martin y Victor R. Preedy, Academic Press, 2020, pp. 343-57 https://doi.org/10.1016/B978-0-12-817780-8.00022-0
- Chhabria, S. V., Akbarsha, M. A., Li, A. P., Kharkar, P. S., & Desai, K. B. (2015). In situ allicin generation using targeted alliinase delivery for inhibition of MIA PaCa-2 cells via epigenetic changes, oxidative stress and cyclin-dependent kinase inhibitor (CDKI) expression. Apoptosis : revista internacional sobre muerte celular programada, 20(10), 1388–1409. https://doi.org/10.1007/s10495-015-1159-4
- Crider, K. S., Yang, T. P., Berry, R. J., & Bailey, L. B. (2012). Folate and DNA methylation: a review of molecular mechanisms and the evidence for folate’s role. Avances en nutrición (Bethesda, Md.), 3(1), 21–38. https://doi.org/10.3945/an.111.000992
- Saitsu, H. (2017). Folate receptors and neural tube closure. Congenital Anomalies, 57(5), 130–133. https://doi.org/10.1111/cga.12218
- Abraham, K. J., Ostrowski, L. A., & Mekhail, K. (2017). Non-Coding RNA Molecules Connect Calorie Restriction and Lifespan. Revista de biología molecular, 429(21), 3196–3214. https://doi.org/10.1016/j.jmb.2016.08.020
- Patel, S. A., Velingkaar, N., Makwana, K., Chaudhari, A., & Kondratov, R. (2016). Calorie restriction regulates circadian clock gene expression through BMAL1 dependent and independent mechanisms. Informes científicos, 6, 25970. https://doi.org/10.1038/srep25970
- Gabandé-Rodríguez, E., Gómez de Las Heras, M. M., & Mittelbrunn, M. (2019). Control of Inflammation by Calorie Restriction Mimetics: On the Crossroad of Autophagy and Mitochondria. Células, 9(1), 82. https://doi.org/10.3390/cells9010082
- Bagherniya, M., Butler, A. E., Barreto, G. E., & Sahebkar, A. (2018). The effect of fasting or calorie restriction on autophagy induction: A review of the literature. Estudios sobre el envejecimiento, 47, 183–197. https://doi.org/10.1016/j.arr.2018.08.004
- Komatsu, T., Park, S., Hayashi, H., Mori, R., Yamaza, H., & Shimokawa, I. (2019). Mechanisms of Calorie Restriction: A Review of Genes Required for the Life-Extending and Tumor-Inhibiting Effects of Calorie Restriction. Nutrientes, 11(12), 3068. https://doi.org/10.3390/nu11123068
- Greger M. (2020). A Whole Food Plant-Based Diet Is Effective for Weight Loss: The Evidence. Revista americana de medicina del estilo de vida, 14(5), 500–510. https://doi.org/10.1177/1559827620912400
- Makki, K., Deehan, E. C., Walter, J., & Bäckhed, F. (2018). The Impact of Dietary Fiber on Gut Microbiota in Host Health and Disease. Célula huésped y microbio, 23(6), 705–715. https://doi.org/10.1016/j.chom.2018.05.012
Contenidos Relacionados
¿Tienes alguna duda acerca de la nutrición y la salud?
Me encantaría saber de usted y responderlas en mi próxima publicación. Agradezco sus aportes y opiniones y espero tener noticias suyas pronto. También te invito a síguenos en Facebook, Instagram y Pinterest para más contenidos sobre dieta, nutrición y salud. Puedes dejar un comentario allí y conectar con otros entusiastas de la salud, compartir tus consejos y experiencias, y recibir apoyo y ánimo de nuestro equipo y nuestra comunidad.
Espero que este post le haya resultado informativo y ameno y que esté preparado para aplicar los conocimientos adquiridos. Si le ha resultado útil, por favor compártelo con tus amigos y familiares que también podrían beneficiarse de ella. Nunca se sabe quién puede necesitar orientación y apoyo en su camino hacia la salud.
– También Te Puede Interesar –
Aprenda Sobre Nutricion
Milos Pokimica es doctor en medicina natural, nutricionista clínico, escritor sobre salud médica y nutrición y asesor en ciencias de la nutrición. Autor de la serie de libros Go Vegan? Revisión de la Ciencia, también dirige el sitio web sobre salud natural GoVeganWay.com.
Descargo De Responsabilidad Médica
GoVeganWay.com le ofrece reseñas de las últimas investigaciones relacionadas con la nutrición y la salud. La información proporcionada representa la opinión personal del autor y no pretende ni implica sustituir el asesoramiento, diagnóstico o tratamiento médico profesional. La información proporcionada tiene fines informativos únicamente y no pretende sustituir la consulta, el diagnóstico y/o el tratamiento médico de un médico o proveedor de atención médica calificado.NUNCA ignore el CONSEJO MÉDICO PROFESIONAL O RETRASAR la BÚSQUEDA de TRATAMIENTO MÉDICO a CAUSA DE ALGO QUE HAYA LEÍDO EN O accesibles a TRAVÉS de GoVeganWay.com
NUNCA APLICAR CUALQUIER cambio de ESTILO de vida O CAMBIOS EN su totalidad COMO UNA CONSECUENCIA DE ALGO QUE HA LEÍDO EN GoVeganWay.com ANTES de CONSULTAR con LICENCIA PROFESIONAL MÉDICO.
En el caso de una emergencia médica, llame a un médico o al 911 inmediatamente. GoVeganWay.com no se recomienda ni aprueba ninguna de los grupos, las organizaciones, las pruebas, los médicos, productos, procedimientos, opiniones u otra información que pueda ser mencionado en el interior.
Selecciones del editor –
Milos Pokimica es doctor en medicina natural, nutricionista clínico, escritor sobre salud médica y nutrición y asesor en ciencias de la nutrición. Autor de la serie de libros Go Vegan? Revisión de la Ciencia, también dirige el sitio web sobre salud natural GoVeganWay.com.
Últimos artículos -
Planta De Noticias Basado En
-
Vietnamese-Style Cucumber Salad
on enero 16, 2025
-
A New Vegan Drive-Thru Wants To Take On McDonald’s
on enero 16, 2025
-
Minus Coffee Launches Vanilla Oat Milk Latte Made Without Coffee Beans
on enero 16, 2025
-
University Of California Rolls Out New Plant-Based Course At All Campuses
on enero 16, 2025
-
Gochujang Mac And Cheese With Crispy Sesame Tofu
on enero 16, 2025
-
Need A Protein-Packed Vegan Breakfast? Try This Scrambled Tofu Burrito
on enero 15, 2025
-
Leading Veterinary Professor: ‘Vegan Diets Can Be Safe For Cats Too!’
on enero 15, 2025
Top Noticias De Salud — ScienceDaily
- Child undernutrition may be contributing to global measles outbreaks, researchers findon enero 16, 2025
Amid a global surge in measles cases, new research suggests that undernutrition may be exacerbating outbreaks in areas suffering from food insecurity. A study involving over 600 fully vaccinated children in South Africa found those who were undernourished had substantially lower levels of antibodies against measles.
- Do parents really have a favorite child? Here’s what new research sayson enero 16, 2025
A new study found that younger siblings generally receive more favorable treatment from parents. Meanwhile, older siblings are often granted more autonomy, and parents are less controlling towards them as they grow up.
- Fatal neurodegenerative disease in kids also affects the bowelon enero 15, 2025
Researchers have described the neurodegeneration that occurs in the nervous system of the bowel in Batten disease, a rare and fatal genetic condition. In their latest study, a team showed that gene therapy to the bowel in mice modeling Batten disease reduced symptoms and extended lifespan.
- Ultrasound-directed microbubbles could boost immune response against tumorson enero 15, 2025
Researchers have designed process that uses ultrasound to modify the behavior of cancer-fighting T cells by increasing their cell permeability. They targeted freshly isolated human immune cells with tightly focused ultrasound beams and clinically approved contrast agent microbubbles. When hit with the ultrasound, the bubbles vibrate at extremely high frequency, acting as a push-pull on the walls of the T cell’s membranes. This can mimic the T cell’s natural response to the presence of an […]
- Scientists develop tiny anticancer weaponon enero 15, 2025
A new twist on a decades-old anticancer strategy has shown powerful effects against multiple cancer types in a preclinical study. The experimental approach, which uses tiny capsules called small extracellular vesicles (sEVs), could offer an innovative new type of immunotherapy treatment and is poised to move toward more advanced development and testing.
- Link between gene duplications and deletions within chromosome region and nonsyndromic bicuspid aortic valve diseaseon enero 15, 2025
Large and rare duplications and deletions in a chromosome region known as 22q11.2 , which involves genes that regulate cardiac development, are linked to nonsyndromic bicuspid aortic valve disease.
- Is eating more red meat bad for your brain?on enero 15, 2025
People who eat more red meat, especially processed red meat like bacon, sausage and bologna, are more likely to have a higher risk of cognitive decline and dementia when compared to those who eat very little red meat, according to a new study.
PubMed, #Dieta vegana –
- Outcomes of dietary interventions in the prevention and progression of Parkinson’s disease: A literature reviewon enero 13, 2025
Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by motor and non-motor symptoms, primarily due to the degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Factors contributing to this neuronal degeneration include mitochondrial dysfunction, oxidative stress, and neuronal excitotoxicity. Despite extensive research, the exact etiology of PD remains unclear, with both genetic and environmental factors playing significant roles. […]
- Evolving Appetites: Current Evidence and Future Perspectives in Terms of Meat Substitutes in Europeon enero 13, 2025
Consumers are increasingly aware of the environmental and health impacts of their food choices, leading to changes in consumption behavior. This study examines the consumption patterns and behaviors of European consumers regarding meat substitutes and identifies factors influencing their acceptance as alternative protein sources. The study involved 5000 participants from four European countries-France, Germany, Italy, and Spain with data extracted from the Mintel consumer database in 2024….
- Ultra-Processed Food and Gut Microbiota: Do Additives Affect Eubiosis? A Narrative Reviewon enero 11, 2025
The gut microbiota plays a key role in health and disease, but it could be affected by various factors (diet, lifestyle, environment, genetics, etc.). Focusing on diet, while the role of the different styles and choices (Mediterranean vs. Western diet, vegan or vegetarian diets) has been extensively studied, there are a few comprehensive papers on the effects of additives and food processing. Therefore, the main goal of this manuscript is to propose an overview of the link between…
- Effects of Plant-Based Diet on Metabolic Parameters, Liver and Kidney Steatosis: A Prospective Interventional Open-label Studyon enero 10, 2025
This interventional single-center prospective open-label study aims to evaluate the effects of a vegan diet, compared to a vegetarian and omnivorous diet, on metabolic parameters, insulin sensitivity, and liver and kidney steatosis in healthy adults. The study included 53 omnivorous participants aged 18-40 years, body-mass index 18-30 kg/m2, without any chronic disease, chronic medication use, active smoking, or significant alcohol consumption. All participants were omnivorous at baseline and…
- Randomised double-blind placebo-controlled trial protocol to evaluate the therapeutic efficacy of lyophilised faecal microbiota capsules amended with next-generation beneficial bacteria in…on enero 9, 2025
BACKGROUND: The spectrum of metabolic dysfunction-associated steatotic liver disease (MASLD) is highly prevalent, affecting 30% of the world’s population, with a significant risk of hepatic and cardiometabolic complications. Different stages of MASLD are accompanied by distinct gut microbial profiles, and several microbial components have been implicated in MASLD pathophysiology. Indeed, earlier studies demonstrated that hepatic necroinflammation was reduced in individuals with MASLD after…
Publicaciones aleatorias –
Publicaciones destacadas -
La última versión desde PubMed, #Dieta basada en plantas –
- Selection of Nonlethal Early Biomarkers to Predict Gilthead Seabream (Sparus aurata) Growthpor Rafael Angelakopoulos on enero 16, 2025
One of the main challenges in aquaculture is the constant search for sustainable alternative feed ingredients that can successfully replace fishmeal (FM) without any negative effects on fish growth and health. The goal of the present study was to develop a toolbox for rapidly anticipating the dynamics of fish growth following the introduction of a new feed; nonlethal, biochemical, and molecular markers that provide insights into physiological changes in the fish. A nutritional challenge by…
- Healthy Plant-Based Diet, Genetic Predisposition, and the Risk of Incident Venous Thromboembolismpor Jing Guo on enero 16, 2025
CONCLUSIONS: Adherence to a healthy plant-based dietary pattern could reduce the risk of developing VTE independent of genetic background, lifestyles, sociodemographic features, and multiple morbidities. Our findings underline the importance of diet in VTE prevention interventions.
- Confluence of Plant-Based Dietary Patterns and Polygenic Risk for Venous Thromboembolismpor Nikolaos Tsaftaridis on enero 16, 2025
No abstract
- A proposal on bird focal species selection for higher tier risk assessments of plant protection products in the EUpor Benedikt Gießing on enero 16, 2025
The revised EFSA 2023 Guidance on the risk assessment of plant protection products for birds and mammals emphasises vulnerability as a relevant criterion for focal species (FS) selection rather than prevalence. The EFSA 2023 Guidance suggests to rank FS candidates for each dietary group according to their expected exposure by estimating a species-specific daily dietary dose (DDD). Species experiencing higher exposure would be ranked as potentially more vulnerable and can be identified as FS…
- Association between major dietary patterns and mental health problems among college studentspor Elahe Fayyazi on enero 15, 2025
CONCLUSION: A strong inverse association was observed between the “plant-based” dietary pattern and depression. While the “Western” dietary pattern was not associated with mental health problems among college students, further prospective studies are warranted.
- Association Between Healthful Plant-Based Dietary Pattern and Obesity Trajectories and Future Cardiovascular Diseases in Middle-Aged and Elderly: A Prospective and Longitudinal Cohort Studypor Zhixing Fan on enero 15, 2025
We aimed to explore the association between plant-based dietary (PBD) patterns and obesity trajectories in middle-aged and elderly, as well as obesity trajectories linked to cardiovascular disease (CVD) risk. A total of 7108 middle-aged and elderly UK Biobank participants with at least three physical measurements were included. Dietary information collected at enrolment was used to calculate the healthful plant-based diet index (hPDI). Group-based trajectory modeling identified two […]