The humans omnivores dilemma- Meat consumption, probiotic bacteria, inflammation, and the gut
Written By: Milos Pokimica
Medically Reviewed by: Dr. Xiùying Wáng, M.D.
Updated June 9, 2023What is a healthy human diet? Are humans omnivores and are we born to consume meat?
Doctors, other experts, and conventional wisdom all agree that animal products are necessary components of a healthy diet and that humans are omnivores. The majority of people believe as well that humans are omnivores. Some argue that humans have always eaten animal products. As a result, they must be natural and healthy.
The majority of us today, or let’s say 99 percent are behavioral (we are not anatomical) omnivores but even this is false. Do you feel tempted to stop and snack on dead animals on the side of the road? Do you fantasize about slaughtering cows with your bare hands and eating them raw? If you answered “no” to these questions, you’re not even a behavioral omnivore. Chimpanzees are more behavioral omnivores even than us. In some cases, chimpanzees will actually kill and eat other monkeys and animals raw.
Despite the fact that many humans eat both plants and meat, earning us the dubious title of “omnivore,” we are anatomically herbivorous.
There are numerous reasons why humans would consume animal products when they are not the best foods for us but this still does not make humans omnivores. For example, as the original people migrated north, they frequently ate animal products to survive because adequate plant products were unavailable. This would make them in the same category as chimpanzees, only behavioral omnivores.
There is also significant cultural pressure to consume animal products. Many people grew up with them. Religions frequently claim that God created animals for humans to use and eat. According to the US Dietary Guidelines, animal products are part of a healthy diet. Food companies frequently publish skewed research claiming that animal products are healthy. Doctors are frequently taught that these foods are healthy.
Until recently, only the wealthy could afford to feed, raise, and slaughter animals for meat, while the rest of the population ate mostly plant foods. As a result, prior to the twentieth century, only the wealthy were routinely afflicted with diseases such as heart disease and obesity. Because animal flesh has become relatively cheap and widely available thanks to the discovery of synthetic fertilizers (it takes 7 calories from starch to make one calorie of meat), deadly diseases such as heart disease, strokes, cancer, diabetes, and obesity have spread to people from all socioeconomic backgrounds. People in less-developed areas of Asia and Africa have begun to suffer and die from diseases associated with meat-based diets as the Western lifestyle spreads. If we consume animal protein, this does not make humans omnivores automatically.
What people don’t realize is that animal protein can be digested and utilized by all herbivores. Not just humans. Humans, as intelligent, higher life forms, have the ability to change our behavior and diet. However, just because we can survive or enjoy eating animal products does not imply that they are optimal, healthy foods for humans.
Anatomy takes precedence over everything, including beliefs and food preferences. Anatomical characteristics are observable facts. They objectively demonstrate the types of foods that we and other creatures evolved to consume and thus thrive on. By comparing the anatomical features of carnivores, omnivores, and herbivores, the following discussion demonstrates that humans are herbivores (Yates et al., 2021).
Are humans omnivores in a true anatomical sense? There is a fundamental difference between the way the digestive tract works in plant-eating and meat-eating species. There are no bacteria in the colon of the meat-eating species because this type of meat-eating bacteria is very aggressive and it is not probiotic. Transit time of food through the digestive tract in meat-eaters needs to be short, no more than five to ten hours or the immune system can be overstressed when meat begins to rot in the colon. That will create inflammation and food poisoning. Also stomach acid in meat eaters is much more corrosive and their upper digestive tract is essentially sterile.
The large intestine (colon) of carnivores and omnivores is thus simple and very short since its sole purpose is to absorb salt and water. It has almost an identical width as the small intestine and, consequently, has a limited capacity to function as a reserve. Although a microbial populace is still present in large amounts in the colon of carnivores, its activities are essentially putrefactive.
In herbivorous animals, the large intestine is a highly specialized organ involved in the absorption of water and electrolytes, the production of vitamins, and the fermentation of plant fibers. The colons of herbivores are always more comprehensive than their small intestine and are relatively long and filled with probiotic bacteria. The microbiome of the colon in humans has an essential role in the normal functioning of the body.
Somehow we underrate the importance of the colon and think it is just some waste material organ. In carnivores, it is, in us, it is not. In Homo sapiens and other primates colon is subject to a different array of functions. For example, water and electrolyte absorption and vitamin production and absorption. There is also extensive bacterial fermentation of fiber that results in the different metabolites and short-chain fatty acids production and absorption from the colon that also provides significant amounts of energy and other health benefits. We are not able to utilize the entire energy value of the fiber as grazers can do but we can utilize some of it. The extent to which the fermentation and absorption of metabolites take place in the human colon has only lately started to be studied, and research into the microbiome is a new big thing because of all of the chemicals that these bacteria can secrete and the effect that they have on our bodies. It is not just the vitamins that probiotic bacteria create. Every chemical is one possible drug.
The composition of the microbiome depends on the food we eat. One type ferments fiber and another type putrefy the meat, and not all of them are probiotic.
Think about it this way, if bacteria putrefy the beans for example and we get gases as a result, it does not have a considerable interest in us. We are not her food. Bacteria like the beans only. Bacteria are organisms that are specialized to a great extent. They do not eat everything. One type eats fiber, another type eats meat. It likes you too but in a different way. You are her host, and you give her all that food and a place to live with moisture and warmth so she may help you live longer because she likes you, but in a different way, she does not like your meat.
However, when we have bacteria that putrefy corpses, then we are on the menu too. Meat is meat, and ours is tasty too. Most people do not realize that most of our immune system about 60-70% is actually in our abdomen as a vast system of lymph networks referred to as GALT (gut-associated lymphatic tissue).
Moreover, about 80% of plasma cells mainly immunoglobulin A (IgA)-bearing cells reside in GALT. We have more foreign DNA from bacteria and other symbiotic microorganisms in us than our own. In carnivore animals because of acidity most of the upper GI tract is sterile. When food reaches the colon, there can be no foreign invaders, and most of the already present species of colon microbiota are “nice” ones. When we eat meat the situation is different. The human gastrointestinal tract features anatomical modifications consistent with an herbivorous diet with low acidity and long transit time, so the potential for the growth of aggressive strains of not symbiotic bacteria is real, and if they are present in the food they can colonize the intestinal lining and cause constant presence for our immune system. The reason for the so-called balance between probiotic and non-probiotic bacteria is because of this. We always have a big chunk of our microbiome that is not symbiotic with our bodies. Eating meat feeds a large chunk of this nonsymbiotic bacteria. High animal products and low fiber consumption are not just associated with an increase in transit time and constipation. They are also associated with the rise of the low level of chronic inflammation and the risk of colon cancer.
When we consume meat it will be sitting in our colon for a long time and because we are not adapted to eating meat and animal products in higher amounts that will have negative effects and that is just how it is. Taking probiotic supplements won’t change anything in real numbers because bacteria multiply very rapidly when there is an energy source. If bacteria eat meat and meat stays in our digestive tract for days the end result is inflammation. If we over-consume animal products at regular intervals we would have a bad microbiome in our colon and a chronic rise in inflammation.
One might wonder what happens in the digestive tract of real omnivorous species. Do real anatomical omnivores have a short or long colon and do they ferment fiber? Carnivore abdomen composition is more primitive than herbivorous adaptations with higher acidity to kill off dead meat bacteria. Therefore, one would expect an omnivore to be a carnivore that shows some adaptations of the gastrointestinal tract to an herbivorous diet. This is precisely the situation we found in the raccoons, the bears, and some members of the canine families. Bears, for example, are mainly herbivores with 70-80% of their diet consisting of plant foods. Because bears include significant amounts of meat in their diet, they must maintain the anatomical characteristics that allow them to capture and kill their prey. Therefore, bears have a maxillary structure, musculature, and dentition that allow them to apply the forces necessary to kill and dismember their prey even though most of their diet consists of plant foods. The most important adaptation to an herbivorous diet in bears is the modification of their teeth. The bears kept the incisors, the large canines, and the premolar shearers of a carnivore; but the molars were square with rounded cusps to crush and grind. They still have high acidity and high resistance filter and short colon. They cannot digest the fibrous vegetation and, therefore, are highly selective. Their diet is dominated mainly by aromatic herbs, tubers, and berries. Many scientists believe that the reason why bears hibernate is due to their primary food (succulent vegetation) are not available in the cold winters of the north. The small intestine is short (less than five times the length of the body) like that of pure carnivores, and the colon is simple, soft, and short.
References:
- Arumugam, M., Raes, J., Pelletier, E., Le Paslier, D., Yamada, T., Mende, D. R., Fernandes, G. R., Tap, J., Bruls, T., Batto, J. M., Bertalan, M., Borruel, N., Casellas, F., Fernandez, L., Gautier, L., Hansen, T., Hattori, M., Hayashi, T., Kleerebezem, M., Kurokawa, K., … Bork, P. (2011). Enterotypes of the human gut microbiome. Nature, 473(7346), 174–180. https://doi.org/10.1038/nature09944
- Moore, W. E., & Moore, L. H. (1995). Intestinal floras of populations that have a high risk of colon cancer. Applied and environmental microbiology, 61(9), 3202–3207. https://doi.org/10.1128/aem.61.9.3202-3207.1995
- Tuohy, K. M., Conterno, L., Gasperotti, M., & Viola, R. (2012). Up-regulating the human intestinal microbiome using whole plant foods, polyphenols, and/or fiber. Journal of agricultural and food chemistry, 60(36), 8776–8782. https://doi.org/10.1021/jf2053959
- Hakansson, A., & Molin, G. (2011). Gut microbiota and inflammation. Nutrients, 3(6), 637–682. https://doi.org/10.3390/nu3060637
- Ferguson J. F. (2013). Meat-loving microbes: do steak-eating bacteria promote atherosclerosis?. Circulation. Cardiovascular genetics, 6(3), 308–309. https://doi.org/10.1161/CIRCGENETICS.113.000213
- Hazen, S. L., & Brown, J. M. (2014). Eggs as a dietary source for gut microbial production of trimethylamine-N-oxide. The American journal of clinical nutrition, 100(3), 741–743. https://doi.org/10.3945/ajcn.114.094458
- Glick-Bauer, M., & Yeh, M. C. (2014). The health advantage of a vegan diet: exploring the gut microbiota connection. Nutrients, 6(11), 4822–4838. https://doi.org/10.3390/nu6114822
- Kellow, N. J., Coughlan, M. T., & Reid, C. M. (2014). Metabolic benefits of dietary prebiotics in human subjects: a systematic review of randomised controlled trials. The British journal of nutrition, 111(7), 1147–1161. https://doi.org/10.1017/S0007114513003607
- Fellows Yates, J. A., Velsko, I. M., Aron, F., Posth, C., Hofman, C. A., Austin, R. M., Parker, C. E., Mann, A. E., Nägele, K., Arthur, K. W., Arthur, J. W., Bauer, C. C., Crevecoeur, I., Cupillard, C., Curtis, M. C., Dalén, L., Carlos, J., Drucker, D. G., Escribano Escrivá, E., . . . Warinner, C. (2021). The evolution and changing ecology of the African hominid oral microbiome. Proceedings of the National Academy of Sciences, 118(20), e2021655118. https://doi.org/10.1073/pnas.2021655118
Related Posts
Do you have any questions about nutrition and health?
I would love to hear from you and answer them in my next post. I appreciate your input and opinion and I look forward to hearing from you soon. I also invite you to follow us on Facebook, Instagram, and Pinterest for more diet, nutrition, and health content. You can leave a comment there and connect with other health enthusiasts, share your tips and experiences, and get support and encouragement from our team and community.
I hope that this post was informative and enjoyable for you and that you are prepared to apply the insights you learned. If you found this post helpful, please share it with your friends and family who might also benefit from it. You never know who might need some guidance and support on their health journey.
– You Might Also Like –
Learn About Nutrition
Milos Pokimica is a doctor of natural medicine, clinical nutritionist, medical health and nutrition writer, and nutritional science advisor. Author of the book series Go Vegan? Review of Science, he also operates the natural health website GoVeganWay.com
Medical Disclaimer
GoVeganWay.com brings you reviews of the latest nutrition and health-related research. The information provided represents the personal opinion of the author and is not intended nor implied to be a substitute for professional medical advice, diagnosis, or treatment. The information provided is for informational purposes only and is not intended to serve as a substitute for the consultation, diagnosis, and/or medical treatment of a qualified physician or healthcare provider.NEVER DISREGARD PROFESSIONAL MEDICAL ADVICE OR DELAY SEEKING MEDICAL TREATMENT BECAUSE OF SOMETHING YOU HAVE READ ON OR ACCESSED THROUGH GoVeganWay.com
NEVER APPLY ANY LIFESTYLE CHANGES OR ANY CHANGES AT ALL AS A CONSEQUENCE OF SOMETHING YOU HAVE READ IN GoVeganWay.com BEFORE CONSULTING LICENCED MEDICAL PRACTITIONER.
In the event of a medical emergency, call a doctor or 911 immediately. GoVeganWay.com does not recommend or endorse any specific groups, organizations, tests, physicians, products, procedures, opinions, or other information that may be mentioned inside.
Editor Picks –
Milos Pokimica is a doctor of natural medicine, clinical nutritionist, medical health and nutrition writer, and nutritional science advisor. Author of the book series Go Vegan? Review of Science, he also operates the natural health website GoVeganWay.com
Latest Articles –
Plant Based News
-
How To Make This Dairy-Free Garlic Butter Chickpea Skillet
on December 12, 2024
-
Vegan Coconut Dhal With Toasted Naan Fingers
on December 12, 2024
-
Plant-Based Bio-Hacker To Launch ‘Don’t Die’ Netflix Documentary
on December 12, 2024
-
RSPCA Under Mounting Pressure To Drop Welfare Label Following New Investigation
on December 12, 2024
-
California Raw Milk CEO May Advise Trump Administration
on December 12, 2024
-
Seared Balsamic Cabbage On Harissa Butter Beans
on December 11, 2024
-
Travellers Struggle To Find Healthy Food In US Airports, Survey Finds
on December 11, 2024
Top Health News — ScienceDaily
- Early-onset colorectal cancer cases surge globallyon December 12, 2024
Researchers show that early-onset colorectal cancer (CRC) incidence rates are rising in 27 of 50 countries/territories worldwide, 20 of which have either exclusive or faster increases for early-onset disease. In 14 countries, including the United States, rates are increasing in young adults while stabilizing in those 50 years and older.
- Study finds new blood test predicts prognosis for advanced prostate cancer patientson December 11, 2024
A new study found that a DNA sequencing test for advanced prostate cancer patients can distinguish between patients with poor and favorable prognoses.
- AI thought knee X-rays show if you drink beer — they don’ton December 11, 2024
A new study highlights a hidden challenge of using AI in medical imaging research — the phenomenon of highly accurate yet potentially misleading results known as ‘shortcut learning.’ The researchers analyzed thousands of knee X-rays and found that AI models can ‘predict’ unrelated and implausible traits such as whether patients abstained from eating refried beans or beer. While these predictions have no medical basis, the models achieved high levels of accuracy by exploiting subtle and […]
- Feeling itchy? Study suggests novel way to treat inflammatory skin conditionson December 11, 2024
A new approach to treat rosacea and other inflammatory skin conditions could be on the horizon, according to a new study.
- Minuscule robots for targeted drug deliveryon December 11, 2024
An interdisciplinary team has created tiny bubble-like microrobots that can deliver therapeutics right where they are needed and then be absorbed by the body.
- Noninvasive imaging method can penetrate deeper into living tissueon December 11, 2024
Researchers developed a non-invasive imaging technique that enables laser light to penetrate deeper into living tissue, capturing sharper images of cells. This could help clinical biologists study disease progression and develop new medicines.
- Tumors grow larger in female fruit flies than males: Here’s what that could mean for humanson December 11, 2024
A new study found that tumors grew 2.5 times larger in female fruit flies than males. With fruit flies sharing many genetic similarities and signaling pathways with humans, the finding could lead to better understanding of cancer development.
PubMed, #vegan-diet –
- The influence of a vegan diet on body composition, performance and the menstrual cycle in young, recreationally trained women- a 12-week controlled trialon December 12, 2024
CONCLUSION: The dietary change resulted in a shift in overall macronutrient distribution. Relative protein intake was significantly lower during the vegan phase than during the omnivore phase. This was also observed in a slight decrease in skeletal muscle mass. No clear effects on performance and menstrual cycle were observed during the first eight weeks. The results suggest that despite the knowledge of a balanced diet and in particular the recommendations for a vegan diet, the […]
- Achieving High Protein Quality Is a Challenge in Vegan Diets: A Narrative Reviewon December 11, 2024
The transition toward plant-based (PB) diets has gained attention as a plausible step toward achieving sustainable and healthy dietary goals. However, the complete elimination of all animal-sourced foods from the diet (ie, a vegan diet) may have nutritional ramifications that warrant close examination. Two such concerns are the adequacy and bioavailability of amino acids (AAs) from plant-sourced foods and the consequences for older vegan populations who have elevated AA requirements. This…
- Combined effects of genetic background and diet on mouse metabolism and gene expressionon December 6, 2024
In humans, dietary patterns impact weight and metabolism differentially across individuals. To uncover genetic determinants for differential dietary effects, we subjected four genetically diverse mouse strains to humanized diets (American, Mediterranean, vegetarian, and vegan) with similar macronutrient composition, and performed body weight, metabolic parameter, and RNA-seq analysis. We observed pronounced diet- and strain-dependent effects on weight, and triglyceride and insulin levels….
- Plant-based dietary patterns and ultra-processed food consumption: a cross-sectional analysis of the UK Biobankon December 2, 2024
BACKGROUND: Dietary shift towards more plant-based options is increasingly popular, but the quantity of ultra-processed foods (UPFs) they contain is largely unknown. This study assessed the level of UPF and minimally processed food consumption among regular and low red meat eaters, flexitarians, pescatarians, vegetarians and vegans in a large dataset of United Kingdom (UK) adults.
- Exploring Consumption of Ultra-Processed Foods and Diet Quality in the Context of Popular Low Carbohydrate and Plant-Based Dietary Approacheson December 2, 2024
This study investigates diet quality across four popular dietary patterns: Ketogenic Diet, Low-Carbohydrate Healthy-Fat, Vegetarian, and Vegan, employing the NOVA and Human Interference Scoring System (HISS) classification systems. Utilizing a modified Food Frequency Questionnaire (FFQ) and analyzing 168 participants’ dietary habits, the research identifies notable differences in dietary quality among the dietary patterns. While all groups reported lower consumption of UPFs than the general…
Random Posts –
Featured Posts –
Latest from PubMed, #plant-based diet –
- The influence of a vegan diet on body composition, performance and the menstrual cycle in young, recreationally trained women- a 12-week controlled trialby Eduard Isenmann on December 12, 2024
CONCLUSION: The dietary change resulted in a shift in overall macronutrient distribution. Relative protein intake was significantly lower during the vegan phase than during the omnivore phase. This was also observed in a slight decrease in skeletal muscle mass. No clear effects on performance and menstrual cycle were observed during the first eight weeks. The results suggest that despite the knowledge of a balanced diet and in particular the recommendations for a vegan diet, the […]
- A pilot study of metaproteomics and DNA metabarcoding as tools to assess dietary intake in humansby Brianna L Petrone on December 12, 2024
Objective biomarkers of food intake are a sought-after goal in nutrition research. Most biomarker development to date has focused on metabolites detected in blood, urine, skin, or hair, but detection of consumed foods in stool has also been shown to be possible via DNA sequencing. An additional food macromolecule in stool that harbors sequence information is protein. However, the use of protein as an intake biomarker has only been explored to a very limited extent. Here, we evaluate and […]
- Enriching the Mediterranean diet could nourish the brain more effectivelyby Pasquale Picone on December 12, 2024
The increasing prevalence of neurodegenerative disorders represents a challenge to the global health of all nations and populations, particularly with increasing longevity. Urgent prevention strategies are therefore needed, and one opportunity may be to explore the relationship between dietary patterns and brain health which has emerged as a promising strategy. Numerous studies indicate that dietary choices have a significant impact on cognitive function, memory and the risks of neurological…
- Diet as an Adjunct Therapy in Reducing Chemotherapy Toxicities and Improving Patients Quality of Life: A Systematic Review and Meta-Analysisby Jessica Abene on December 12, 2024
This review analyzed existing literature regarding the relationship between different diets and chemotherapy toxicities, as well as the quality of life (QOL) among patients undergoing treatment. It aims to identify the most advantageous diet for cancer patients. PubMed, CINAHL, and Embase were used to select randomized control trials (RCTs) assessing the relationship between a specific diet and chemotherapy toxicities and/or QOL in patients as of October 2023. Out of 1,419 records, 11 RCTs […]
- Effects of green tea-derived natural products on resistance exercise training in sarcopenia: A retrospective narrative mini-reviewby Hung-Wen Liu on December 12, 2024
Skeletal muscle function deficits result in metabolic disease development and physical dysfunction in older adults. Sarcopenia is characterized by a decrease in muscle mass and strength with advancing age, and it increases the risks of mobility impairments, disease development, and mortality. Lifestyle interventions involving a combination of diet and exercise to prevent and attenuate sarcopenia warrant substantial research attention. Resistance exercise training under supervision is a safe […]
- Nutritional specificity of frailty: from epidemiological and clinical evidence to potential mechanismsby Laetitia Lengelé on December 11, 2024
PURPOSE OF REVIEW: Considering the ageing of the population, age-related syndromes, such as frailty, are prominent. In this context, nutrition is a modifiable factor considered a key nonpharmacological approach to prevention and treatment. Yet, its contribution to the frailty pathophysiology is conflicting in the literature. This paper discusses the recent literature (January 2023-June 2024) on the implication of nutrition in frailty management.