Brain size, intelligence and meat consumption- The vegan argument
Combining some amount of foraged meat to the predominantly vegan diet did not become a pivotal force in the emergence of human intelligence and brain size.
Milos Pokimica
Written By: Milos Pokimica
Medically Reviewed by: Dr. Xiùying Wáng, M.D.
Updated June 9, 2023Was cooking the crucial part of developing a human brain size or was its use of Stone Age tools, or whether adding starch-rich USOs (underground storage units) or meat to the diet?
What was the most crucial energy source that provided much-needed energy for the development of the brain size?
The debates are emotional in nature, and not as logical as science needs to be. It is because of our underlying desire to prove to ourselves that meat consumption is natural for human evolution so that we can justify large-scale meat consumption in the modern era. The scientific and archeological data can become a problem in this scenario if data don’t reflect the desirable way of looking at things.
Scientists are not immune to emotional bias. In order to have large-scale meat consumption on a daily basis, the two criteria must be met.
(1) We need to have a viable option for acquiring the meat.
(2) We need to have the physiological ability to digest it.
The first criteria for humans that are not anatomical hunters and are slow and weak and cannot compete with true anatomical hunters are to scavenge for it. That option will not support the calorie requirement and can only be an additional source of calories to a small extent. For the second option, we would need to have fire technology. Subsequently, anything before Homo erectus is excluded. Some scientists believe that even Homo erectus was not capable of controlling the fire. It is a big debate.

Currently, the earliest well-accepted instance of fire-burning in a controlled manner came from Israel’s Qesem Cave 400,000 years ago.
When you don’t hunt and you live on a tree and you need to forage for edible leaves and fruit you have a difficult life. What happened then is a process of natural selection that strongly favors traits that enhance the efficiency of foraging. Hence, as plant foods became increasingly important over time adaptation gradually gave rise to the group of characteristics presently considered the property of primates. Most of these traits are adapted to facilitate the movement and foraging in trees.
For example, adaptation yielded hands well suited for grasping branches and manipulating slender and small fruit and leaves. In order to detect ripe fruits and enable safe moving through arboreal habitats adaptation forced improvement of the optical capabilities (including depth perception, sharpened acuity, and color vision). Good vision is crucial for moving through the three-dimensional space of the forest canopy and quickly determining the appearance of ripe fruits or tiny, young leaves. Carnivorous species do not have full-color vision. They do not need to detect ripe fruits.
Moreover, such environmental pressures also favored the ability to learn and remember the identity and locations of edible plant parts and also to calculate the optimal foraging strategies to save energy thus increasing behavioral flexibility as well. Foraging benefits from the improvement of visual and cognitive skills. As a result, it promoted the development of unusually large brain sizes, a characteristic of primates since their inception.
Eating meat or bone marrow had nothing to do with the development of the larger brain size. Different plant foods will lack the different nutrients we need. For example, one plant may have some but not all amino acids and vitamins at an adequate level, or even if it is nutrient-dense and doesn’t have fiber it may lack energy in the form of carbohydrates (starch and sugar). Mammals that depend primarily on plants for meeting their daily nutritional requirements and are not adapted for one particular plant food source that is in abundance as a consequence must seek out a variety of complementary food sources from a different array of plants.
They have to combine different food types to get all of the nutrients they need. This demand greatly complicates food gathering. It is a tough life, and it is a constant struggle for food and requires constant use of thinking.
Most arboreal hominids and other primates concentrate on ripe fruits on one side and young leaves. They eat other types of food too, but these two are the main ones. Fruits tend to be rich in energy in the form of fructose and relatively low in fiber, but they might not provide all of the essential amino acids and tend to be the rarest of all plant sources. This kind of scarcity complicates things because if in a certain period of the year there are no fruits available. During that time period, the energy requirement is not met, and there is a need for supplementation with different plant sources. Leaves are full of protein and are everywhere, but they are of lower quality meaning there are no carbohydrates in them and we cannot live on them alone, and they tend to be filled with undesirable toxic chemicals.
Because primates are not adapted for digesting fiber they eat young leaves that are softener than the tough old ones that cannot be digested. When trees exhibit seasonal peaks in the production of fruits and young leaves primates have to eat them as much as they can and reliance on a single food choice is not sustainable.
From an evolutionary view, there are two basic strategies for coping with these problems.
One is to increase the efficiency of nutrient extraction from fibrous foods. This is a form of adaptation that we can see in mammals that are grazers.
For hominids in the past and also for primates, and humans fiber essentially go through their stomach unchanged.
Another biological adaptation that can facilitate survival on low-quality plant food is to grow larger over time. When an animal goes larger compared to smaller animals, it will consume greater overall amounts of food to feed its more extensive tissue mass. However, for reasons that science had not been able to entirely explain, the more massive the animal is the fewer calories it needs to sustain itself and attain adequate nourishment. In mathematical terms, larger animals need less energy per unit of body weight. What this means is that larger animals are able to eat less and can eat lower-quality food to meet their energy requirements.
However, growing bigger for primates is not an option because they are arboreal animals. For growing too massive, they risk falling to their death.
Another evolutionary strategy is open to arboreal plant eaters and is more behavioral than biological.
It is a foraging strategy. Because fruits are rare and very sporadically scattered in tropical forests, the strategy requires the implementation of practices that promise to reduce the energy of acquiring these resources. In order to survive the primates must use their brains more and more to form foraging strategies that are sustainable. A good memory would significantly improve the approach. Ability to recall the exact places of plants that produce desirable fruits and when these trees were likely to bear ripe fruits and to remember the precise directions to these trees would improve foraging profitability in energy expenditure sense by lowering search and travel energy costs by enlarging brain capacity to remember and to plan in advance.
In comparison, grazers do not need brain development because their food is all around them and all they need is to lower their head. Reliance on memory and foraging strategies have pushed for the selection and development of a bigger brain size that has a higher ability for storing information. As a group, primates have always depended on selective feeding and on having the brainpower to carry off this strategy successfully.
The growth of the brain size in combination with growth in body size and a decline in teeth size supports the notion of a high-quality diet. And this is an evolutionary adaptation that is universal to all primates in the last 66 Ma. Some have gone far like humans. We have a brain evolved enough to create pure refined white sugar.
Most other plant-eating species, in opposition, have tended to focus heavily on physiological adaptations for better digesting fiber in order to reduce the need to invest energy in searching for high-quality food. Behavioral adaptations, requiring increased brain power, enable certain species to choose high-quality food.
If we look calorie-wise, the brain is the most expensive organ to maintain. It takes over the vast amount of energy from food, roughly 20% at rest in humans. Natural selection is not going to favor the development of a massive brain size if it is not going to get any benefits from enlargement. The appearance of modern humans with big and capable brains occurred because natural selection favored adaptations that focused on the efficiency of foraging. That was the line of evolution that permitted primates to focus their feeding on the most energy-dense, low-fiber diets they could find, and find is a crucial word.
Finding high-quality food in a scarce environment is what created modern humans. It had little to do with eating meat or any other form of energy. A form of energy is of lesser importance than the way that energy is obtained. In other words, if the meat had anything to do with the development of brainpower, then all of the carnivore species on this planet will be colonizing the outer reaches of the galaxy by now. There is no magic nutrient in the meat that was responsible for the rise of human brainpower. Meat is just meat, another energy source.
There is no absolute correlation between meat eating and intelligence. The manner of combining some amount of foraged meat with a predominantly vegan diet did not become a pivotal force in the emergence of modern humans. Also, it is not even correlated to brain size either. There is no particularly strong relationship between brain size and intelligence, with a correlation value between 0.3 and 0.4 out of a possible 1.0. it is the number of neurons in the brain no matter what that brain size is, that counts (Dicke & Roth, 2016). The human brain has the largest number of cortical neurons (about 15 billion), despite the fact that the human brain and cortex are much smaller in size than, for example, those of cetaceans and elephants (with 10–12 billion or even fewer cortical neurons).
References:
- Dicke, U., & Roth, G. (2016). Neuronal factors determining high intelligence. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 371(1685), 20150180. https://doi.org/10.1098/rstb.2015.0180
- Barr, W. Andrew, et al. “No Sustained Increase in Zooarchaeological Evidence for Carnivory After the Appearance of Homo Erectus.” Proceedings of the National Academy of Sciences of the United States of America, vol. 119, no. 5, National Academy of Sciences, Jan. 2022, https://doi.org/10.1073/pnas.2115540119.
Related Posts
Do you have any questions about nutrition and health?
I would love to hear from you and answer them in my next post. I appreciate your input and opinion and I look forward to hearing from you soon. I also invite you to follow us on Facebook, Instagram, and Pinterest for more diet, nutrition, and health content. You can leave a comment there and connect with other health enthusiasts, share your tips and experiences, and get support and encouragement from our team and community.
I hope that this post was informative and enjoyable for you and that you are prepared to apply the insights you learned. If you found this post helpful, please share it with your friends and family who might also benefit from it. You never know who might need some guidance and support on their health journey.
– You Might Also Like –

Learn About Nutrition
Milos Pokimica is a doctor of natural medicine, clinical nutritionist, medical health and nutrition writer, and nutritional science advisor. Author of the book series Go Vegan? Review of Science, he also operates the natural health website GoVeganWay.com
Medical Disclaimer
GoVeganWay.com brings you reviews of the latest nutrition and health-related research. The information provided represents the personal opinion of the author and is not intended nor implied to be a substitute for professional medical advice, diagnosis, or treatment. The information provided is for informational purposes only and is not intended to serve as a substitute for the consultation, diagnosis, and/or medical treatment of a qualified physician or healthcare provider.NEVER DISREGARD PROFESSIONAL MEDICAL ADVICE OR DELAY SEEKING MEDICAL TREATMENT BECAUSE OF SOMETHING YOU HAVE READ ON OR ACCESSED THROUGH GoVeganWay.com
NEVER APPLY ANY LIFESTYLE CHANGES OR ANY CHANGES AT ALL AS A CONSEQUENCE OF SOMETHING YOU HAVE READ IN GoVeganWay.com BEFORE CONSULTING LICENCED MEDICAL PRACTITIONER.
In the event of a medical emergency, call a doctor or 911 immediately. GoVeganWay.com does not recommend or endorse any specific groups, organizations, tests, physicians, products, procedures, opinions, or other information that may be mentioned inside.
Editor Picks –
Milos Pokimica is a doctor of natural medicine, clinical nutritionist, medical health and nutrition writer, and nutritional science advisor. Author of the book series Go Vegan? Review of Science, he also operates the natural health website GoVeganWay.com
Latest Articles –
Plant Based News
-
Oscar Mayer Debuts Pack Of Plant-Based And Animal-Based Hot Dogs For ‘Everybun’
on August 26, 2025
-
Polenta Topped With Cannellini Bean Stew
on August 26, 2025
-
10 Innovative Ways To Use Tofu
on August 25, 2025
-
Philly Vegan Cheesesteak
on August 25, 2025
-
Making Beans Sexy Again With Three One-Pot Recipes
on August 24, 2025
-
Vegan Banh Mi
on August 24, 2025
-
5 Powerful Plants That Can Help Heal Wounds
on August 23, 2025
Top Health News — ScienceDaily
- The hidden DNA organizer linking fertility and canceron August 27, 2025
Scientists at Kyoto University have uncovered a hidden protein complex that organizes DNA in sperm stem cells, a discovery that reveals surprising ties between fertility and cancer. When this protein, called STAG3, is missing, sperm stem cells cannot mature properly, leading to infertility in mice. Even more intriguing, the same protein is found in high levels in certain immune cells and cancers, and blocking it slowed tumor growth in the lab.
- Rats walk again after breakthrough spinal cord repair with 3D printingon August 26, 2025
University of Minnesota researchers developed a 3D-printed scaffold that directs stem cells to grow into functioning nerve cells, successfully restoring movement in rats with severed spinal cords. This promising technique could transform future treatment for spinal cord injuries.
- Scientists crack indole’s toughest bond with copper, unlocking new medicineson August 26, 2025
Scientists have cracked one of chemistry’s toughest challenges with indoles, using copper to unlock a spot once thought too stubborn to change. The discovery could pave the way for easier, cheaper drug development.
- The surprising reason x-rays can push arthritis patients toward surgeryon August 26, 2025
Knee osteoarthritis is a major cause of pain and disability, but routine X-rays often do more harm than good. New research shows that being shown an X-ray can increase anxiety, make people fear exercise, and lead them to believe surgery is the only option, even when less invasive treatments could help. By focusing on clinical diagnosis instead, patients may avoid unnecessary scans, reduce health costs, and make better choices about their care.
- The common cold’s unexpected superpower against COVIDon August 26, 2025
A nationwide study found that recent colds caused by rhinoviruses can give short-term protection against COVID-19. Children benefit most, as their immune systems react strongly with antiviral defenses, helping explain their lower rates of severe illness.
- 9 in 10 Australian Teachers Are Stressed to Breaking Pointon August 26, 2025
Australian teachers are in crisis, with 9 in 10 experiencing severe stress and nearly 70% saying their workload is unmanageable. A major UNSW Sydney study found teachers suffer depression, anxiety, and stress at rates three to four times higher than the national average, largely driven by excessive administrative tasks. These mental health struggles are pushing many to consider leaving the profession, worsening the teacher shortage.
- Common painkillers like Advil and Tylenol supercharge antibiotic resistanceon August 26, 2025
Painkillers we often trust — ibuprofen and acetaminophen — may be quietly accelerating one of the world’s greatest health crises: antibiotic resistance. Researchers discovered that these drugs not only fuel bacterial resistance on their own but make it far worse when combined with antibiotics. The findings are especially troubling for aged care settings, where residents commonly take multiple medications, creating perfect conditions for resistant bacteria to thrive.
PubMed, #vegan-diet –
- Risk of Osteoporosis and Anemia in Plant-Based Diets: A Systematic Review of Nutritional Deficiencies and Clinical Implicationson August 22, 2025
The global shift toward plant-based diets is accelerating, driven by growing awareness of health, environmental, and ethical concerns. While these diets are linked to reduced risks of chronic diseases, emerging evidence highlights potential nutritional deficiencies, particularly in calcium, iron, and vitamin B12, that may compromise bone and hematologic health. This systematic review investigates the relationship between strict plant-based dietary practices and the risks of anemia and…
- Dietary guidance on plant-based meat alternatives for individuals wanting to increase plant protein intakeon August 21, 2025
A new generation of plant-based meat alternatives (PBMAs) has entered the mainstream. These products contain concentrated sources of plant protein and are formulated to mimic the taste and texture of their meat-based counterparts, especially red meat. The increased availability of these products coincides with calls from health agencies to increase the dietary plant-to-animal protein ratio for health and environmental reasons. The role of PBMAs in achieving the goal of consuming more plant…
- Vegan diet and nutritional status in infants, children and adolescents: A position paper based on a systematic search by the ESPGHAN Nutrition Committeeon August 17, 2025
Vegan and other plant-based diets are becoming increasingly popular in the paediatric age group. There is limited evidence in the current medical literature to determine whether a vegan diet is adequate for children, since the currently available society position papers are based on narrative reviews and expert opinion. Updated evidence-based recommendations are needed to guide clinical practice. This position paper presents findings from a literature review performed using a systematic […]
- Beyond the plate: A pilot study exploring the microbial landscape of omnivores and vegans through 16S rRNA gene amplicon sequencing and metagenomicson August 13, 2025
CONCLUSIONS: These results were consistent with recently published gut microbiome signatures of vegans and omnivores across three different countries. Therefore, this small dataset allows a first insight into the gut microbiota of another county’s omnivores and vegans whereby detailed and relevant dietary, lifestyle and health related characteristics collected in this study aid in understanding of the connection between respective diets and the microbiome.
- Plant-based diets and risk of type 2 diabetes: systematic review and dose-response meta-analysison August 11, 2025
Type 2 diabetes (T2D) incidence has been steadily increasing over the past few decades. Several studies have evaluated the effect of plant-based, vegetarian or vegan diets on the risk of T2D, although their potential benefits need to be confirmed and characterized. We performed a literature search up to July 10, 2025 using the terms/keywords related to plant-based index (PDI), vegetarian/vegan diets, and T2D. We included observational non-experimental studies evaluating adherence to such […]
Random Posts –
Featured Posts –

Latest from PubMed, #plant-based diet –
- A Scoping Review of Choice Architecture to Promote Healthy Nutrition in Health and Care Settingsby Victoria Bion on August 26, 2025
CONCLUSIONS: In this review, the evidence indicates that choice architecture interventions can support healthier food choices in health and care settings. However, there is limited research and nutritional evaluation of choice architecture interventions that encourage plant-based diets. Further well-conducted studies are needed in health and care settings to determine optimal typologies, or combined approaches, for making healthier dietary choices. Given the established evidence of […]
- Integrating population-based metabolomics with computational microbiome modelling identifies methanol as a urinary biomarker for protective diet-microbiome-host interactionsby Kristin Klier on August 26, 2025
Background: Diet-microbiome interactions are core to human health, in particular through bacterial fibre degradation pathways. However, biomarkers reflective of these interactions are not well described. Methods: Using the population-based SHIP-START-0 cohort (n = 4017), we combined metabolome-wide screenings with elastic net machine learning models on 33 food items captured using a food frequency questionnaire (FFQ) and 43 targeted urine nuclear magnetic resonance (NMR) metabolites, […]
- Associations of maternal dietary iron intake during pregnancy with infant neurodevelopment: evidence from a prospective cohort studyby Rui Qin on August 26, 2025
CONCLUSIONS: Maternal heme iron intake, particularly in late pregnancy, may contribute to optimal infant neurodevelopment. These findings emphasize the importance of evaluating the distinct roles of maternal heme and non-heme iron intakes on neurodevelopment.
- Diet quality and nutrient distribution while using glucagon-like-peptide-1 receptor agonist: A secondary cross-sectional analysisby Brittany V B Johnson on August 25, 2025
CONCLUSION: Within the sample of patients using GLP-1RAs, dietary quality was suboptimal for fruits, vegetables, whole grains, seafood and plant proteins, dairy and fatty acids. Future research is needed to determine if HEI scores change before, during, and after GLP-1RA treatments and nutrient timing.
- Population growth performance and antioxidant enzymes activities of Helicoverpa armigera (Lepidoptera: Noctuidae) on diets from various sesame cultivarsby Zahra Arab Yabarati on August 25, 2025
The polyphagous species of cotton bollworm, Helicoverpa armigera (Hübner), is one of the major constraints in sesame production. The present study aimed to explore the life history and life table parameters of H. armigera on several meridic diets based on various sesame cultivars (Barekat, Mohajer, Shevin, Chamran, Jiroft, Behbahan, Sistan, Dashtestan, Dezful, and Hamidieh). Furthermore, the antioxidant defense system of H. armigera was evaluated via measuring antioxidant enzyme activities,…
- Aligning human and planetary health: towards tailored dietary advice for diverse citizen profilesby Villi Ieremia on August 25, 2025
The global food system has inadequately addressed complex societal challenges, including climate change and nutritional deficiencies. There is an increasing recognition of the interconnectedness of human and planetary health in food production and consumption. Several policy interventions exist to tackle food-related nutritional and environmental aspects and influence consumer decision-making towards nutritious and environmentally friendly options. Examples of demand-side interventions […]