High Protein Diet and Metabolic Acidosis: Health Risks Correlations
Low levels of metabolic acidosis is a common occurrence in the standard American diet. Most people are in a state of chronic acidosis and are not aware of it.
Milos Pokimica
Written By: Milos Pokimica
Medically Reviewed by: Dr. Xiùying Wáng, M.D.
Updated June 10, 2023Key Takeaways:
– Western-style diet dominated by animal products promotes the accumulation of non-metabolizable anions.
– Even extremely mild levels of metabolic acidosis prompt serious health diseases like skeletal muscle insulin resistance and kidney failure.
– The acid burden might be a significant variable in the cardiovascular disease risk for the entire population on top of the risk of obesity.
– Calcium loss as a consequence of a high-quality animal protein-rich diet is a scientific consensus.
– Muscle wasting appears to be an adaptive response, to acidosis in calcium deficiency.
– Metabolic acidosis by itself is correlated to type 2 diabetes, hypertension, osteoporosis, connective tissue loss, fibromyalgia, hyperuricemia and gout, kidney function damage, and decline, kidney stones, dehydration, decreased exercise performance…
– Balance your DAL with fruits and vegetables if you don’t want to change your diet. Add nutrient-dense, mineral-rich, antioxidant-rich fruits and vegetables on the top of your SAD diet as a first step.
Standard American Diet.
The standard Western-type diet is a processed food-dominated diet with high levels of animal product consumption. This type of diet is severely lacking in not just green leafy vegetables but also in all types of nutrient-dense and antioxidant-rich whole food sources and contains extreme amounts of high-quality animal protein.
One of the results of this type of diet is the promotion and accumulation of non-metabolizable anions and a condition that significantly worsens in aging because of the physiological decrease in kidney function.
In response to this type of diet-induced metabolic acidosis, the kidneys will implement different metabolic pathways that aim at reestablishing the acid-base equilibrium.
This will have a negative health correlation in the long run.
Metabolic processes.
Some metabolic processes in diet-induced acidity (metabolic acidosis) include the extraction of the non-metabolizable anions, the preservation of citrate, and the increase in kidney ammoniagenesis and urinary excretion of ammonium particles.
These metabolic processes will bring down the urinary pH but will also promote a broad change in urinary synthesis, including hypercalciuria, hypocitraturia, and nitrogen and phosphate removal.
The negative side effect of this is the promotion of calcium stone development.
What is even worse than stones is the fact that even extremely mild levels of metabolic acidosis prompt serious health diseases like skeletal muscle insulin resistance and kidney failure.
Results of observational studies had proven the health risk correlation in insulin resistance and diabetes with all metabolic acidosis markers, including low serum bicarbonate, high serum anion gap, hypocitraturia, and low urine pH. Also, the acid burden might be a significant variable in the cardiovascular disease risk for the entire population on top of the risk of obesity (Adeva and Souto, 2011).
Most people when they hear “acid-forming food” just think about calcium loss not realizing the scope of the problem.
Calcium loss.
Calcium loss as a consequence of a high-quality animal protein-rich diet is a scientific consensus (Thorpe and Evans, 2011). And it is a reasonable hypothesis that by eating acid-forming food (like meat), our body will use calcium to buffer it and as a result, we were, fundamentally, in danger of urinating our bones out. This hypothesis was backed by the fact that when we do eat high protein diet we get an increase in urinary calcium concentrations.
Calcium testing showed in all situations that when we add high protein sources like meat or eggs or dairy the rise in calcium will correspond to the amount of protein added. The hypothesis due to the testing was introduced, and this was at beginning of the 20th century, that animal products, not just meat are acid-forming food. Later testing showed that plant-based whole foods are both acid forming and alkaline but mostly alkaline.
In acid reflux, people will use calcium pills to try to buffer the stomach acid so this is nothing new. Calcium carbonate (chalk) treats heartburn and upset stomach, or other conditions caused by too much stomach acid.

But what about the rest of the body in a standard American animal products-dominated diet?
Sulfur-containing amino acids.
Meat and eggs have a great deal of sulfur-containing amino acids. Amino acids are building blocks of protein and not all of them are made equal. Meat has two to in some cases four times more sulfur-containing amino acids than beans or grains for example and much more than in common vegetables.
That sulfur creates sulfuric acid by oxidation of protein, which needs to be neutralized by the kidneys (Brosnan & Brosnan, 2006).
There was even a debate about dairy for a long time because of this. Milk was considered to be a good source of calcium but also a source of protein that needs to be buffered by calcium. In the end, dairy might not be a good source of calcium when we calculate calcium loss due to metabolic acidosis.
One step further will be a question of how much calcium we need to consume on a standard protein-dominated Western diet if we have to calculate calcium loss.
If we don’t take enough calcium and calcium deficiency is a common deficiency then where will our body pull the calcium from? The logical answer will be from the bones.
This is especially problematic for people with already-developed osteoporosis. For every 40 grams of protein we add to our diet, and in the SAD (standard American diet) average is 90 grams a day, the loss of calcium in our urine will be around 50mg. If you are already calcium deficient or in a risk group for osteoporosis, this would translate into a two percent loss in a year. We just have around two pounds of calcium in total stored whiting our body including bones. Our bodies need 30 grams of protein at max rest of the protein goes for gluconeogenesis, around 60 grams in SAD. At average. That is 75mg a day of calcium loss multiplied by 365 is 27375mg of calcium loss. This is 27 grams and we have a total of around 2000 grams for about 1,5 to 2 percent of total loss annually.
If you are calcium deficient and on a high protein diet especially a high-quality protein diet this can be one of the problems. If you are not calcium deficient then the body will just pull more of the calcium from the diet as a defense mechanism (Calvez et al., 2011).
There was a study that proved that if there is calcium in the food our body will pull additional amounts to buffer the acids. They gave subjects radioactive calcium and also increased protein in their diet (Cao et al., 2011). Then scientists measure an increase in urinary calcium loss with a special emphasis on radioactivity.
The calcium loss did increase but all of the urinary calcium or most of it around 90 percent was radioactive.
An increase in dietary protein created an increase in calcium retention from 20% to 26%. There is still no consensus among scientists on how dietary protein helps calcium assimilation but if there is calcium in the meal it will be more bioavailable due to protein.
Calcium deficiency.
The problem arises in situations with already preexisting calcium deficiency.
One other problem is aging.
If there is already preexisting calcium deficiency where will our body pull additional calcium to buffer the acids and also what happens in aging? As we age our blood gets more acidic due to renal decline (Frassetto et al., 1996). The worst scenario is in patients with renal disease. They have strictly regulated protein intake monitored by certified dietitians.
In these situations, excess acids will be buffered from calcium that has to be pulled from our body, and the first on the line is not bone calcium.
It is pulled from the muscles.
Catabolism of the muscle tissue.
Catabolism of the muscle tissue will be a primary source for acid neutralization. Muscle wasting appears to be an adaptive response, to acidosis (Mann et al., 2021). When our body catabolizes muscle protein it would have a source of the amino acid l-glutamine that will come out of a catabolized protein (Gurina, 2022). Then it will use glutamine to neutralize acids.
Glutamine is a common anti-catabolic muscle-building supplement that bodybuilders like to use.

It might be a good idea if you don’t have an adequate intake of calcium to at least add glutamine as a supplement if for any reason you don’t want to decrease protein consumption. Also, glutamine is predominantly a renal gluconeogenic substrate, whereas alanine gluconeogenesis is essentially confined to the liver (Stumvoll et al., 1999). And no you cannot eat calcium carbonate chalk or any other mineral as a supplement. Minerals are only able to be fully bioavailable for biochemical processes if they are small enough in physical size or if they are in the monoatomic form that plants create.

In sarcopenia due to protein wasting in aging the common practice is to increase protein requirements for the elderly and also to add a calcium supplement. This is done because calcium is needed to buffer the metabolic acidosis that will be a consequence of an increase in dietary protein. If not corrected this low level of chronic metabolic acidosis will contribute to both osteoporosis and muscle wasting in old age.
For people eating SAD the amount of calcium needed to buffer acidity is a minimum of 800mg a day.
In correlation, African women in rural parts of the continent don’t get osteoporosis on average of 300mg of calcium a day. In aging, you don’t have to drink milk to get calcium or eat meat to get protein. Beans for example have as much protein as meat but are not acid-forming. Poppy seeds have 1,4 times more calcium in 100 grams than 1 liter of milk and sesame seeds have the same amount of calcium in 100 grams as 1 liter of milk. Grains and some seeds like sunflower seeds are mildly acidic, not at the same level as meat but also sunflower seeds are one of the rarely available sources of vitamin E and it is a must in most diet plans.

The one solution will be to stop eating a high-quality protein diet because there are other health risk factors correlated with it than just metabolic acidosis that can be easily corrected if it exists in the first place.
Dietary acid load (DAL).
In evolutionary terms, all hominin diets were plant-based. This means that our body unlike the bodies of carnivores species had not evolved to cope well with a chronic acid-forming diet. Hominin diets based on whole food plant-based sources were more base than acid-forming.
There are two categories basically.
Animal protein-rich foods that promote acid formation and metabolic acidosis and fruits and vegetables are base-inducing foods.
More about alkaline diets will be discussed in correlated articles. Dietary acid load (DAL) is calculated as the sum of all of the food we have eaten during the day. DAL is calculated based on the intake of acid-forming and base-forming foods, such as animal proteins and fruits and vegetables, respectively. Two common methods for estimating DAL are potential renal acid load (PRAL) and net endogenous acid production (NEAP). PRAL is based on the intake of protein, phosphorus, potassium, magnesium, and calcium, while NEAP is based on the intake of protein and potassium. DAL needs to be in normal ranges because it is correlated to more serious diseases like kidney damage, (Osuna-Padilla et al., 2019).
“Diets high in PRAL induce a low-grade metabolic acidosis state, which is associated with the development of metabolic alterations such as insulin resistance, diabetes, hypertension, chronic kidney disease, bone disorders, low muscle mass and other complications.“
(Osuna-Padilla et al., 2019)
Other correlations include independently of any other factor of insulin resistance and cardiovascular disease (Krupp et al., 2018),
“Diets rich in fruits and vegetables, like the Dietary Approaches to Stop Hypertension (DASH)-diet, are usually characterized by high potassium intake and reduced dietary acid load, and have been shown to reduce blood pressure (BP).”
“PRAL was significantly associated with higher systolic BP (p = 0.0002) and higher hypertension prevalence (Odds ratio [OR] high vs. low PRAL = 1.45, p = 0.0004) in models adjusted for age, sex, body mass index (BMI), estimated sodium intake, kidney function, relevant medication, and further important covariates. “
“Our results show, for the first time in a comparative analysis of a large representative population sample, significant relationships of BP and hypertension prevalence with questionnaire- and biomarker-based estimates of potassium intake and with an estimate of dietary acid load.“
(Krupp et al., 2018)
It is not just a question of calcium loss. You can read more about health risk correlations with a high protein diet in a correlated article about this (High protein diet- Health risk correlations).
Food source | PRAL value |
---|---|
Meat | 9.5 |
Cheese | 26.8 |
Eggs | 8.2 |
Fruits | -3.1 |
Vegetables | -2.8 |
Metabolic acidosis health risk correlations:
When we consider just chronic low-level acidity caused by a Western-type diet without any other correlation, just metabolic acidosis by itself is correlated to (DiNicolantonio and O’Keefe, 2021):
- Insulin resistance and type 2 diabetes.
- Increased gluconeogenesis (conversion of amino acids to glucose).
- Hypertension.
- Bone loss in calcium deficient individuals.
- Osteoporosis/osteopenia/sarcopenia in calcium deficient individuals.
- Muscle loss and reduced muscle strength in calcium deficient individuals.
- Connective tissue loss in calcium deficient individuals.
- Fibromyalgia.
- Hyperuricemia (too much uric acid in your blood) and gout.
- Kidney function damage and decline.
- Kidney stones independent from renal decline.
- Less citrate to bind to calcium and more calcium to oxalic acid increasing calcium oxalate stone formation.
- Reduced urine pH increasing uric acid stone formation.
- Negative sodium and chloride balance.
- Salt loss and mineral deficiencies.
- Increased loss of sodium, chloride, potassium, calcium, magnesium, sulfate, and phosphate out of the urine.
- The sodium and potassium loss are due to a decrease in the reabsorption of these minerals by the kidneys, which likely reduces the reabsorption of taurine
- The loss of calcium, magnesium, and phosphate is from bone losses
- Taurine loss
- Increased water loss out of the urine.
- Dehydration.
- Decreased exercise performance.
Low-grade acidosis.
Why low-grade acidosis is so common in the standard American diet:
- The average diet in the Western world leads to a net acid excretion of 50–100 mEq/day.
- The kidneys must be relied on to prevent low-grade acidosis as the lungs cannot affect acid-base status over the long run.
- The kidneys of a healthy person can only excrete 40–70 mEq of acid per day before the acid is retained in the body.
- Animal-based, keto, or carnivore-type diets typically provide 150–250 mEq of acid per day.
- Once the kidneys reach their threshold approximately 1 mEq of acid is retained per 2.5 mEq of acid above the threshold.
- If the diet does not contain enough bicarbonate (bicarbonate-forming substances or citrate) and minerals (sodium, potassium, magnesium, and calcium) to neutralize the excess acid then negative consequences to numerous bodily systems take place.
Solution:
The solution for this is simple as it can be. Balance your DAL with fruits and vegetables if you don’t want to change your diet. Add nutrient-dense, mineral-rich, antioxidant-rich fruits and vegetables on the top of your SAD diet as a first step. Add sesame seeds to your muesli and eat kale in salads and it would help your body to neutralize some of the metabolic acidosis. This will be a step to prevent acidity from the diet and nothing else. Add glutamine supplement.
Food | Calcium per serving |
---|---|
Poppy seeds (30g) | 432 mg |
Sesame seeds (30g) | 201 mg |
Chia seeds (30g) | 189 mg |
Calcium-fortified soy milk (200ml) | 240 mg |
Calcium-fortified oat milk (200ml) | 240 mg |
Calcium-fortified almond milk (200ml) | 240 mg |
Calcium-fortified coconut milk (200ml) | 240 mg |
Calcium-set tofu (100g) | 350 mg |
Kale (80g cooked) | 185 mg |
Figs (30g dried) | 75 mg |
Almonds (30g whole kernels) | 81 mg |
However, other health consequences of high-quality protein-dominated diets cannot be so easily avoided.
Conclusion:
- A Western-style diet dominated by animal products promotes the accumulation of non-metabolizable anions.
- This accumulation significantly worsens in aging because of the physiological decrease in kidney function.
- In response to this type of diet-induced metabolic acidosis, the kidneys will implement different metabolic pathways that aim at reestablishing the acid-base equilibrium.
- Metabolic processes in diet-induced acidity (metabolic acidosis) include the extraction of the non-metabolizable anions, the preservation of citrate, and the increase in kidney ammoniagenesis and urinary excretion of ammonium particles.
- These metabolic processes will bring down the urinary pH but will also promote a broad change in urinary synthesis, including hypercalciuria, hypocitraturia, and nitrogen and phosphate removal.
- The negative side effect of this is the promotion of calcium stone development.
- Even extremely mild levels of metabolic acidosis prompt serious health diseases like skeletal muscle insulin resistance and kidney failure.
- The acid burden might be a significant variable in the cardiovascular disease risk for the entire population on top of the risk of obesity .
- Calcium loss as a consequence of a high-quality animal protein-rich diet is a scientific consensus.
- Meat and eggs have a great deal of sulfur-containing amino acids.
- That sulfur creates sulfuric acid by oxidation of protein, which needs to be neutralized by the kidneys.
- If you consume a calcium-deficient diet and a high protein diet especially a high-quality protein diet additional calcium will be lost.
- As we age our blood gets more acidic due to renal decline.
- The worst scenario is in patients with renal disease.
- Muscle wasting appears to be an adaptive response, to acidosis in calcium deficiency.
- In sarcopenia due to protein wasting in aging the common practice is to increase protein requirements for the elderly and also to add a calcium supplement.
- For people eating SAD the amount of calcium needed to buffer acidity is a minimum of 800mg a day.
- Hominin diets based on whole food plant-based sources were more base than acid-forming.
- Dietary acid load (DAL) is calculated as the sum of all of the food we have eaten during the day.
- DAL needs to be in normal ranges because it is correlated to more serious diseases like kidney damage.
- Animal protein-rich foods that promote acid formation and metabolic acidosis and fruits and vegetables are base-inducing foods.
- Balance your DAL with fruits and vegetables if you don’t want to change your diet.
FAQ
References:
- Adeva, M. M., & Souto, G. (2011). Diet-induced metabolic acidosis. Clinical nutrition (Edinburgh, Scotland), 30(4), 416–421. https://doi.org/10.1016/j.clnu.2011.03.008
- DiNicolantonio, J. J., & O’Keefe, J. H. (2021). Low-grade metabolic acidosis as a driver of chronic disease: a 21st century public health crisis. Open Heart, 8(2), e001730. https://doi.org/10.1136/openhrt-2021-001730
- Thorpe, M. P., & Evans, E. M. (2011). Dietary protein and bone health: harmonizing conflicting theories. Nutrition reviews, 69(4), 215–230. https://doi.org/10.1111/j.1753-4887.2011.00379.x
- Calvez, J., Poupin, N., Chesneau, C., Lassale, C., & Tomé, D. (2012). Protein intake, calcium balance and health consequences. European journal of clinical nutrition, 66(3), 281–295. https://doi.org/10.1038/ejcn.2011.196
- Kerstetter, J. E., O’Brien, K. O., Caseria, D. M., Wall, D. E., & Insogna, K. L. (2005). The impact of dietary protein on calcium absorption and kinetic measures of bone turnover in women. The Journal of clinical endocrinology and metabolism, 90(1), 26–31. https://doi.org/10.1210/jc.2004-0179
- Cao, J. J., Johnson, L. K., & Hunt, J. R. (2011). A diet high in meat protein and potential renal acid load increases fractional calcium absorption and urinary calcium excretion without affecting markers of bone resorption or formation in postmenopausal women. The Journal of nutrition, 141(3), 391–397. https://doi.org/10.3945/jn.110.129361
- Ausman, L. M., Oliver, L. M., Goldin, B. R., Woods, M. N., Gorbach, S. L., & Dwyer, J. T. (2008). Estimated net acid excretion inversely correlates with urine pH in vegans, lacto-ovo vegetarians, and omnivores. Journal of renal nutrition : the official journal of the Council on Renal Nutrition of the National Kidney Foundation, 18(5), 456–465. https://doi.org/10.1053/j.jrn.2008.04.007
- Schwalfenberg G. K. (2012). The alkaline diet: is there evidence that an alkaline pH diet benefits health?. Journal of environmental and public health, 2012, 727630. https://doi.org/10.1155/2012/727630
- Dawson-Hughes, B., Harris, S. S., & Ceglia, L. (2008). Alkaline diets favor lean tissue mass in older adults. The American journal of clinical nutrition, 87(3), 662–665. https://doi.org/10.1093/ajcn/87.3.662
- Chauveau, P., Combe, C., Fouque, D., & Aparicio, M. (2013). Vegetarianism: advantages and drawbacks in patients with chronic kidney diseases. Journal of renal nutrition : the official journal of the Council on Renal Nutrition of the National Kidney Foundation, 23(6), 399–405. https://doi.org/10.1053/j.jrn.2013.08.004
- Uribarri, J., & Oh, M. S. (2012). The key to halting progression of CKD might be in the produce market, not in the pharmacy. Kidney international, 81(1), 7–9. https://doi.org/10.1038/ki.2011.331
- Sherman, H. C., & Gettler, A. O. (1912). THE BALANCE OF ACID-FORMING AND BASE-FORMING ELEMENTS IN FOODS, AND ITS RELATION TO AMMONIA METABOLISM. Journal of Biological Chemistry, 11(4), 323–338. https://doi.org/10.1016/s0021-9258(18)88738-5
- Calcium requirement of maintenance in man. J. Biol. Chem. 1920, 44:21-27 [PDF]
- Kerstetter, J. E., O’Brien, K. O., & Insogna, K. L. (2003). Low protein intake: the impact on calcium and bone homeostasis in humans. The Journal of nutrition, 133(3), 855S–861S. https://doi.org/10.1093/jn/133.3.855S
- Frassetto, L. A., Morris, R. C., Jr, & Sebastian, A. (1996). Effect of age on blood acid-base composition in adult humans: role of age-related renal functional decline. The American journal of physiology, 271(6 Pt 2), F1114–F1122. https://doi.org/10.1152/ajprenal.1996.271.6.F1114
- Goraya, N., Simoni, J., Jo, C. H., & Wesson, D. E. (2013). A comparison of treating metabolic acidosis in CKD stage 4 hypertensive kidney disease with fruits and vegetables or sodium bicarbonate. Clinical journal of the American Society of Nephrology : CJASN, 8(3), 371–381. https://doi.org/10.2215/CJN.02430312
- Sebastian, A., Frassetto, L. A., Sellmeyer, D. E., Merriam, R. L., & Morris, R. C., Jr (2002). Estimation of the net acid load of the diet of ancestral preagricultural Homo sapiens and their hominid ancestors. The American journal of clinical nutrition, 76(6), 1308–1316. https://doi.org/10.1093/ajcn/76.6.1308
- Deriemaeker, P., Aerenhouts, D., Hebbelinck, M., & Clarys, P. (2010). Nutrient based estimation of acid-base balance in vegetarians and non-vegetarians. Plant foods for human nutrition (Dordrecht, Netherlands), 65(1), 77–82. https://doi.org/10.1007/s11130-009-0149-5
- Taylor, L., & Curthoys, N. P. (2004). Glutamine metabolism: Role in acid-base balance*. Biochemistry and molecular biology education : a bimonthly publication of the International Union of Biochemistry and Molecular Biology, 32(5), 291–304. https://doi.org/10.1002/bmb.2004.494032050388
- Brosnan, J. T., & Brosnan, M. E. (2006). The Sulfur-Containing Amino Acids: An Overview ,. Journal of Nutrition, 136(6), 1636S-1640S. https://doi.org/10.1093/jn/136.6.1636s
- Calvez, J., Poupin, N., Chesneau, C., Lassale, C., & Tomé, D. (2012). Protein intake, calcium balance and health consequences. European journal of clinical nutrition, 66(3), 281–295. https://doi.org/10.1038/ejcn.2011.196
- Gurina, T. S. (2022, December 11). Biochemistry, Protein Catabolism. StatPearls – NCBI Bookshelf. https://www.ncbi.nlm.nih.gov/books/NBK556047/
- Mann, G., Mora, S., Madu, G., & Adegoke, O. A. J. (2021). Branched-chain Amino Acids: Catabolism in Skeletal Muscle and Implications for Muscle and Whole-body Metabolism. Frontiers in physiology, 12, 702826. https://doi.org/10.3389/fphys.2021.702826
- Stumvoll, M., Perriello, G., Meyer, C., & Gerich, J. E. (1999). Role of glutamine in human carbohydrate metabolism in kidney and other tissues. Kidney International, 55(3), 778–792. https://doi.org/10.1046/j.1523-1755.1999.055003778.x
- Osuna-Padilla, I. A., Leal-Escobar, G., Garza-García, C. A., & Rodríguez-Castellanos, F. E. (2019). Dietary Acid Load: mechanisms and evidence of its health repercussions. Carga ácida de la dieta; mecanismos y evidencia de sus repercusiones en la salud. Nefrologia, 39(4), 343–354. https://doi.org/10.1016/j.nefro.2018.10.005
- Krupp, D., Esche, J., Mensink, G. B. M., Klenow, S., Thamm, M., & Remer, T. (2018). Dietary Acid Load and Potassium Intake Associate with Blood Pressure and Hypertension Prevalence in a Representative Sample of the German Adult Population. Nutrients, 10(1), 103. https://doi.org/10.3390/nu10010103
Related Posts
Do you have any questions about nutrition and health?
I would love to hear from you and answer them in my next post. I appreciate your input and opinion and I look forward to hearing from you soon. I also invite you to follow us on Facebook, Instagram, and Pinterest for more diet, nutrition, and health content. You can leave a comment there and connect with other health enthusiasts, share your tips and experiences, and get support and encouragement from our team and community.
I hope that this post was informative and enjoyable for you and that you are prepared to apply the insights you learned. If you found this post helpful, please share it with your friends and family who might also benefit from it. You never know who might need some guidance and support on their health journey.
– You Might Also Like –

Learn About Nutrition
Milos Pokimica is a doctor of natural medicine, clinical nutritionist, medical health and nutrition writer, and nutritional science advisor. Author of the book series Go Vegan? Review of Science, he also operates the natural health website GoVeganWay.com
Medical Disclaimer
GoVeganWay.com brings you reviews of the latest nutrition and health-related research. The information provided represents the personal opinion of the author and is not intended nor implied to be a substitute for professional medical advice, diagnosis, or treatment. The information provided is for informational purposes only and is not intended to serve as a substitute for the consultation, diagnosis, and/or medical treatment of a qualified physician or healthcare provider.NEVER DISREGARD PROFESSIONAL MEDICAL ADVICE OR DELAY SEEKING MEDICAL TREATMENT BECAUSE OF SOMETHING YOU HAVE READ ON OR ACCESSED THROUGH GoVeganWay.com
NEVER APPLY ANY LIFESTYLE CHANGES OR ANY CHANGES AT ALL AS A CONSEQUENCE OF SOMETHING YOU HAVE READ IN GoVeganWay.com BEFORE CONSULTING LICENCED MEDICAL PRACTITIONER.
In the event of a medical emergency, call a doctor or 911 immediately. GoVeganWay.com does not recommend or endorse any specific groups, organizations, tests, physicians, products, procedures, opinions, or other information that may be mentioned inside.
Editor Picks –
Milos Pokimica is a doctor of natural medicine, clinical nutritionist, medical health and nutrition writer, and nutritional science advisor. Author of the book series Go Vegan? Review of Science, he also operates the natural health website GoVeganWay.com
Latest Articles –
Plant Based News
-
Oscar Mayer Debuts Pack Of Plant-Based And Animal-Based Hot Dogs For ‘Everybun’
on August 26, 2025
-
Polenta Topped With Cannellini Bean Stew
on August 26, 2025
-
10 Innovative Ways To Use Tofu
on August 25, 2025
-
Philly Vegan Cheesesteak
on August 25, 2025
-
Making Beans Sexy Again With Three One-Pot Recipes
on August 24, 2025
-
Vegan Banh Mi
on August 24, 2025
-
5 Powerful Plants That Can Help Heal Wounds
on August 23, 2025
Top Health News — ScienceDaily
- Rats walk again after breakthrough spinal cord repair with 3D printingon August 26, 2025
University of Minnesota researchers developed a 3D-printed scaffold that directs stem cells to grow into functioning nerve cells, successfully restoring movement in rats with severed spinal cords. This promising technique could transform future treatment for spinal cord injuries.
- Scientists crack indole’s toughest bond with copper, unlocking new medicineson August 26, 2025
Scientists have cracked one of chemistry’s toughest challenges with indoles, using copper to unlock a spot once thought too stubborn to change. The discovery could pave the way for easier, cheaper drug development.
- The surprising reason x-rays can push arthritis patients toward surgeryon August 26, 2025
Knee osteoarthritis is a major cause of pain and disability, but routine X-rays often do more harm than good. New research shows that being shown an X-ray can increase anxiety, make people fear exercise, and lead them to believe surgery is the only option, even when less invasive treatments could help. By focusing on clinical diagnosis instead, patients may avoid unnecessary scans, reduce health costs, and make better choices about their care.
- The common cold’s unexpected superpower against COVIDon August 26, 2025
A nationwide study found that recent colds caused by rhinoviruses can give short-term protection against COVID-19. Children benefit most, as their immune systems react strongly with antiviral defenses, helping explain their lower rates of severe illness.
- 9 in 10 Australian Teachers Are Stressed to Breaking Pointon August 26, 2025
Australian teachers are in crisis, with 9 in 10 experiencing severe stress and nearly 70% saying their workload is unmanageable. A major UNSW Sydney study found teachers suffer depression, anxiety, and stress at rates three to four times higher than the national average, largely driven by excessive administrative tasks. These mental health struggles are pushing many to consider leaving the profession, worsening the teacher shortage.
- Common painkillers like Advil and Tylenol supercharge antibiotic resistanceon August 26, 2025
Painkillers we often trust — ibuprofen and acetaminophen — may be quietly accelerating one of the world’s greatest health crises: antibiotic resistance. Researchers discovered that these drugs not only fuel bacterial resistance on their own but make it far worse when combined with antibiotics. The findings are especially troubling for aged care settings, where residents commonly take multiple medications, creating perfect conditions for resistant bacteria to thrive.
- Maui’s fires drove a 67% jump in deaths. Most went uncountedon August 26, 2025
Researchers uncovered that the Maui wildfires caused a spike in deaths far higher than reported, with hidden fatalities linked to fire, smoke, and lack of medical access. They warn that prevention rooted in Native Hawaiian ecological knowledge is critical to avoiding another tragedy.
PubMed, #vegan-diet –
- Risk of Osteoporosis and Anemia in Plant-Based Diets: A Systematic Review of Nutritional Deficiencies and Clinical Implicationson August 22, 2025
The global shift toward plant-based diets is accelerating, driven by growing awareness of health, environmental, and ethical concerns. While these diets are linked to reduced risks of chronic diseases, emerging evidence highlights potential nutritional deficiencies, particularly in calcium, iron, and vitamin B12, that may compromise bone and hematologic health. This systematic review investigates the relationship between strict plant-based dietary practices and the risks of anemia and…
- Dietary guidance on plant-based meat alternatives for individuals wanting to increase plant protein intakeon August 21, 2025
A new generation of plant-based meat alternatives (PBMAs) has entered the mainstream. These products contain concentrated sources of plant protein and are formulated to mimic the taste and texture of their meat-based counterparts, especially red meat. The increased availability of these products coincides with calls from health agencies to increase the dietary plant-to-animal protein ratio for health and environmental reasons. The role of PBMAs in achieving the goal of consuming more plant…
- Vegan diet and nutritional status in infants, children and adolescents: A position paper based on a systematic search by the ESPGHAN Nutrition Committeeon August 17, 2025
Vegan and other plant-based diets are becoming increasingly popular in the paediatric age group. There is limited evidence in the current medical literature to determine whether a vegan diet is adequate for children, since the currently available society position papers are based on narrative reviews and expert opinion. Updated evidence-based recommendations are needed to guide clinical practice. This position paper presents findings from a literature review performed using a systematic […]
- Beyond the plate: A pilot study exploring the microbial landscape of omnivores and vegans through 16S rRNA gene amplicon sequencing and metagenomicson August 13, 2025
CONCLUSIONS: These results were consistent with recently published gut microbiome signatures of vegans and omnivores across three different countries. Therefore, this small dataset allows a first insight into the gut microbiota of another county’s omnivores and vegans whereby detailed and relevant dietary, lifestyle and health related characteristics collected in this study aid in understanding of the connection between respective diets and the microbiome.
- Plant-based diets and risk of type 2 diabetes: systematic review and dose-response meta-analysison August 11, 2025
Type 2 diabetes (T2D) incidence has been steadily increasing over the past few decades. Several studies have evaluated the effect of plant-based, vegetarian or vegan diets on the risk of T2D, although their potential benefits need to be confirmed and characterized. We performed a literature search up to July 10, 2025 using the terms/keywords related to plant-based index (PDI), vegetarian/vegan diets, and T2D. We included observational non-experimental studies evaluating adherence to such […]
Random Posts –
Featured Posts –

Latest from PubMed, #plant-based diet –
- A Scoping Review of Choice Architecture to Promote Healthy Nutrition in Health and Care Settingsby Victoria Bion on August 26, 2025
CONCLUSIONS: In this review, the evidence indicates that choice architecture interventions can support healthier food choices in health and care settings. However, there is limited research and nutritional evaluation of choice architecture interventions that encourage plant-based diets. Further well-conducted studies are needed in health and care settings to determine optimal typologies, or combined approaches, for making healthier dietary choices. Given the established evidence of […]
- Integrating population-based metabolomics with computational microbiome modelling identifies methanol as a urinary biomarker for protective diet-microbiome-host interactionsby Kristin Klier on August 26, 2025
Background: Diet-microbiome interactions are core to human health, in particular through bacterial fibre degradation pathways. However, biomarkers reflective of these interactions are not well described. Methods: Using the population-based SHIP-START-0 cohort (n = 4017), we combined metabolome-wide screenings with elastic net machine learning models on 33 food items captured using a food frequency questionnaire (FFQ) and 43 targeted urine nuclear magnetic resonance (NMR) metabolites, […]
- Prostate cancer risk reduction: promising prevention practices and insightsby Emmanuel Ifeanyi Obeagu on August 25, 2025
Prostate cancer is among the leading causes of cancer-related morbidity and mortality in men worldwide. Despite advancements in diagnostic and therapeutic approaches, prevention remains a critical strategy to curb its prevalence. This review examines promising prevention practices, including lifestyle modifications, dietary interventions, and the use of chemopreventive agents. It also delves into emerging insights from genetic, epigenetic, and molecular studies, offering a comprehensive…
- Diet quality and nutrient distribution while using glucagon-like-peptide-1 receptor agonist: A secondary cross-sectional analysisby Brittany V B Johnson on August 25, 2025
CONCLUSION: Within the sample of patients using GLP-1RAs, dietary quality was suboptimal for fruits, vegetables, whole grains, seafood and plant proteins, dairy and fatty acids. Future research is needed to determine if HEI scores change before, during, and after GLP-1RA treatments and nutrient timing.
- Population growth performance and antioxidant enzymes activities of Helicoverpa armigera (Lepidoptera: Noctuidae) on diets from various sesame cultivarsby Zahra Arab Yabarati on August 25, 2025
The polyphagous species of cotton bollworm, Helicoverpa armigera (Hübner), is one of the major constraints in sesame production. The present study aimed to explore the life history and life table parameters of H. armigera on several meridic diets based on various sesame cultivars (Barekat, Mohajer, Shevin, Chamran, Jiroft, Behbahan, Sistan, Dashtestan, Dezful, and Hamidieh). Furthermore, the antioxidant defense system of H. armigera was evaluated via measuring antioxidant enzyme activities,…
- Aligning human and planetary health: towards tailored dietary advice for diverse citizen profilesby Villi Ieremia on August 25, 2025
The global food system has inadequately addressed complex societal challenges, including climate change and nutritional deficiencies. There is an increasing recognition of the interconnectedness of human and planetary health in food production and consumption. Several policy interventions exist to tackle food-related nutritional and environmental aspects and influence consumer decision-making towards nutritious and environmentally friendly options. Examples of demand-side interventions […]