Экспрессия Генов и Эпигенетика: Как Диета и Окружающая Среда Влияют на Ваше Эдоровье
Автор: Милош Покимица
Медицинская Обзор: Доктор Сюйинь Ван, Доктор Медицинских Наук.
Updated Июнь 10, 2023Основные Выводы:
-Экспрессия генов и эпигенетика - это динамические и отзывчивые процессы, которые регулируют включение или выключение генов в ответ на различные стимулы.
-Диета и окружающая среда - два основных фактора, которые могут влиять на экспрессию генов и эпигенетику, предоставляя питательные вещества, химические вещества или сигналы, которые могут изменять ДНК или белки, взаимодействующие с ней.
– Changes in gene expression can have significant effects on health and disease prevention, by altering the cellular functions, metabolism, inflammation, immunity, and aging of the body.
Введение.
Большинство людей в той или иной степени знакомы с наукой, лежащей в основе генетики. Генетика помогает нам понять, как происходит эволюция, и как мы наследуем черты от наших родителей, и помогает нам в медицине, или антропология понять, как происходила эволюция нашего тела от гомининов до анатомически современного человека.
Но как же эпигенетика? Знакомо ли Вам это понятие? Знаете ли Вы, что гены не являются чем-то неизменным? Знаете ли Вы, как мы можем изменить свою судьбу, воздействуя на свои гены? Это новая и развивающаяся научная область - эпигенетика.
Классическая генетика.
Но как мы к этому пришли? Как мы открыли секреты ДНК и механизмы ее регуляции?
Все началось с монаха Грегора Менделя, жившего в XIX веке. Его интересовало, как растения наследуют такие признаки, как цвет цветка и форма семени. Он проводил эксперименты с горохом, скрещивая их и подсчитывая потомство. Он заметил, что некоторые признаки наследуются по простой схеме, в то время как другие, казалось, смешиваются или исчезают. Он вывел несколько правил, объясняющих его наблюдения, которые мы теперь называем законами наследования Менделя. Он опубликовал свою работу в 1865 г., но это никого не заинтересовало. Он умер, так и не узнав, что стал отцом важнейшей области науки, называемой генетикой.
Перенесемся в начало XX века. Некоторые ученые заново открыли работу Менделя и поняли, что она была гениальной. Они также обнаружили, что хромосомы состоят из ДНК и белков и что они несут единицы наследственности, которые они назвали генами. Они выяснили, как гены расположены на хромосомах, как они могут обмениваться в процессе мейоза (деления клетки) и как они могут мутировать под действием радиации или химических веществ. Они также научились составлять карты генов на хромосомах, используя анализ сцепления и частоты рекомбинации. Это была эпоха классической генетики.
Но возникла проблема. Классическая генетика не могла объяснить всего. Например, как гены контролируют признаки? Как гены взаимодействуют с окружающей средой и насколько она влияет на наш геном? Как гены меняются с течением времени и в разных поколениях? Эти вопросы привели к созданию новой дисциплины, получившей название молекулярной биологии.
Центральная догма.
В 1953 году Джеймс Уотсон и Фрэнсис Крик решили задачу структура ДНК. Она представляла собой двойную спираль, состоящую из четырех нуклеотидов (A, T, C, G), которые спаривались друг с другом определенным образом (A с T, C с G). Они поняли, что такая структура объясняет, как ДНК может хранить информацию (последовательность нуклеотидов), копировать себя (разделяя нити и используя их в качестве шаблонов) и экспрессировать себя (транскрибируясь в РНК и трансформируясь в белки). Эта работа стала "центральная догма молекулярной биологии". Теория утверждает, что генетическая информация течет только в одном направлении - от ДНК к РНК, к белку или от РНК непосредственно к белку. Впервые она была заявлена Фрэнсисом Криком в 1957 году и опубликована в 1958 году.
Но существовала и другая проблема. Молекулярная биология тоже не могла объяснить всего.
Например, как клетки узнали, когда и где включать и выключать гены? Как в процессе развития клетки делятся на разные типы, ведь все они имеют одинаковую ДНК? Как клетки запоминают свою идентичность и историю, что важно для исследования рака? Как клетки реагируют на сигналы, поступающие от других клеток или из окружающей среды?
Рождение эпигенетики.
Эти вопросы привели к зарождению эпигенетики, целью которой стало раскрытие механизмов, регулирующих экспрессию генов без изменения последовательности ДНК.
Термин "эпигенетика" был предложен Конрадом Уоддингтоном еще в 1942 году, но потребовались десятилетия, чтобы он получил научное признание.
Эпигенетика основана на идее о существовании химических модификаций в ДНК или на гистоны (белки, обволакивающие ДНК), которые могут влиять на доступ к генам и их использование клеточным механизмом. Эти модификации могут добавляться или удаляться ферментами в зависимости от различных факторов, таких как тип клетки, стадия развития, экологические сигналы, стресс, диета и т.д. (Peixoto et al., 2020). Эти изменения также могут передаваться дочерним клеткам в процессе деления клеток или даже детям в процессе репродукции.
Это означает, что эпигенетика может влиять на признаки, которые не кодируются только ДНК, такие как поведение, восприимчивость к заболеваниям или старение.
Эпигенетика - одна из самых горячих тем, как и генетика, которая когда-то была еще более горячей. Проблема в том, что большинство людей об этом не слышали, поэтому сохраняется старое убеждение, что гены - это все. Нам необходимо популяризировать новые исследования среди широкой общественности, которая до сих пор считает, что гены - это нечто неизменное и с этим ничего нельзя поделать. Эпигенетика бросает вызов некоторым предположениям и догмам генетики и молекулярной биологии. Она открывает новые возможности для понимания жизни на более глубоком уровне. Она также открывает новые возможности для улучшения медицины и здоровья путем изменения экспрессии генов.
Важны не гены, а то, как они выражают себя.
Что такое экспрессия генов?
Прежде чем мы более подробно рассмотрим эпигенетику с научной точки зрения, давайте поговорим об экспрессии генов.
Экспрессия генов относится к тому, как часто или когда белки создаются на основе инструкций, содержащихся в генах. (Что такое эпигенетика? | CDC, 2022b).
Белки - это строительные блоки. Они выполняют множество функций: строят ткани, борются с инфекциями, регулируют выработку гормонов.Пелуза и др., 2022).
Ваши гены несут в себе информацию о производстве белков, но сами они белки не производят. Им требуется помощь других молекул, таких как РНК и ферменты, считывающие код и производящие белки. Этот процесс называется транскрипцией (Блэквелл и др., 2006).
Транскрипция не всегда включена. Она может включаться или выключаться в зависимости от различных факторов, таких как сигналы от других клеток, гормоны или питательные вещества. Так наш организм адаптируется к различным ситуациям.
Например, когда вы голодны, в организме включаются гены, заставляющие ферменты расщеплять пищу и высвобождать энергию. Когда вы наедаетесь, организм отключает эти гены и включает гены, откладывающие избыток энергии в виде жира.
Почему эпигенетика имеет значение?
Epi в переводе с греческого означает "над" или "на вершине". Важны не гены, а то, что они выражают.
Все ваши клетки имеют одинаковые гены, но выглядят и ведут себя по-разному из-за эпигенетических изменений. Другими словами, это дополнительный слой информации, контролирующий регуляцию генов (Гамильтон и др., 2011).
Epigenetic modifications can inhibit or activate gene expression. A combination of these modifications plays an important role in “imprinting,” a type of “mark” that determines whether a gene will be expressed or not.
ДНК образуется из комбинаций нуклеотиды. Это известные буквы, о которых знает большинство людей: аденин (A), тиамин (T), гуанин (G) и цитозин (C).
Цитозин, например, может быть изменен путем добавления метильной группы (CH3).
Этот процесс называется метилированием и приводит к изменению экспрессии гена, последовательность которого была изменена. Метилирование ДНК, как правило, приводит к сайленсингу гена. При неудачном стечении обстоятельств это может быть очень плохо, если ген регулирует иммунную или какую-либо другую важную функцию.
Эпигенетические изменения могут происходить еще до рождения, в процессе развития и на протяжении всей жизни. Некоторые эпигенетические изменения являются нормальными и необходимы для роста и функционирования организма.
Другие эпигенетические изменения происходят под влиянием вашего поведения и окружающей среды.
Например, то, что вы едите, может влиять на метилирование генов или модификацию гистонов.
Ваша физическая активность может влиять на количество вырабатываемой некодирующей РНК или на ее взаимодействие с кодирующей РНК.
Эти эпигенетические изменения являются частью эволюции и имеют свое предназначение, но в некоторых случаях могут оказывать положительное или отрицательное влияние на здоровье.
Некоторые эпигенетические изменения, например, могут улучшать состояние иммунной системы, активируя гены, борющиеся с воспалением или раком.
Другие эпигенетические изменения могут повышать риск заболеваний за счет выключения генов, регулирующих обмен веществ или работу иммунной системы (см.Fanucchi et al, 2021); (Сурас и др., 2019).
Это движущая сила адаптации и эволюции. Если вам нужно доказательство эволюции и того, как она работает в реальном времени и как развиваются организмы, то это именно оно. Именно поэтому эпигенетические изменения также могут передаваться по наследству из поколения в поколение. Например, если ваши бабушки и дедушки подвергались воздействию токсинов, мутагенов или стрессовых факторов и если это воздействие привело к эпигенетическим изменениям в их ДНК, сперматозоидах или яйцеклетках, то эти изменения могут затем передаться вам и повлиять на экспрессию ваших генов (см. рис. 1).Денхардт и др., 2018).
Загрязненная окружающая среда и повсеместно присутствующие токсины будут влиять не только на вашу ДНК, но и на ДНК ваших детей (см.de Magalhães-Barbosa et al., 2022).
Эпигенетические изменения и их влияние на здоровье.
Приведенная ниже таблица иллюстрирует основные факторы, влияющие на экспрессию генов и эпигенетические изменения. Факторов больше, но из этой таблицы можно сделать вывод, что в каждой строке факторами, влияющими на риск, являются питание, стресс и воздействие токсинов.
Эпигенетические изменения | Влияние на здоровье | Источники |
Метилирование ДНК | A process that adds methyl groups to DNA bases, affecting gene expression. Environmental variables such as food, stress, and токсичность воздействие все они могут изменять метилирование ДНК. Метилирование ДНК может влиять на различные аспекты здоровья, такие как риск развития рака, иммунная функция и старение. | Кавалли и др., 2019 |
Модификации гистонов | Процесс, изменяющий структуру гистонов - белков, обволакивающих ДНК. Модификации гистонов могут влиять на то, насколько плотно или неплотно упакована ДНК, что сказывается на экспрессии генов. На модификации гистонов могут влиять такие факторы окружающей среды, как питание, стресс, воздействие токсинов. Модификации гистонов могут влиять на различные аспекты здоровья, такие как риск развития рака, иммунная функция и старение. | Кавалли и др., 2019 |
Некодирующие РНК | РНК, не кодирующая белки. Такие факторы окружающей среды, как питание, стресс и воздействие токсинов, могут влиять на некодирующую РНК. Некодирующая РНК может оказывать влияние на многие сферы здоровья, включая риск развития рака, иммунологические функции и старение. | Кавалли и др., 2019 |
Инфекции | Микроорганизмы могут изменять эпигенетику, ослабляя иммунную систему. Это помогает микробу выжить. Пример: Микобактерия туберкулеза вызывает туберкулез. Туберкулез был и остается смертельным заболеванием, поскольку он может изменять метилирование ДНК иммунных клеток, что делает иммунную систему менее эффективной в борьбе с инфекцией. | Что такое эпигенетика? | CDC, 2022b |
Примеры эпигенетических изменений и их влияние на риск развития рака.
Рак - сложное заболевание, включающее тысячи различных мутаций, которые накапливаются и связаны с изменениями как в геноме, так и в эпигеноме (Brena et al., 2007), (Шен и др., 2013). У вас может быть генетическая предрасположенность, которая досталась вам от родителей, но это лишь одна часть общей картины.
Эта генетическая предрасположенность к раку фактически включается в зависимости от экспрессии генов, а экспрессия генов в основном зависит от рациона питания (Халлар и др., 2014), и окружающей среды (Абдул и др., 2017).
Эпигенетические изменения могут включать или выключать гены, участвующие в росте клеток, их гибели или иммунном ответе. Эти изменения могут повлиять на общий риск развития рака или на реакцию на лечение рака. Именно поэтому мы имеем эпидемию рака, когда каждый четвертый человек в западных обществах со стандартной американской диетой, умрут от этого заболевания. Причиной являются не плохие гены, а экспрессия генов.
Приведем некоторые примеры эпигенетических изменений и их влияния на риск развития рака:
- Метилирование ДНК блокирует доступ к гену белкам, которые считывают его, по сути, выключая ген. Метилирование ДНК может выключать гены, подавляющие опухоли или восстанавливающие повреждения ДНК, тем самым деактивируя иммунную систему. Например, мутация в гене BRCA1, не позволяющая ему работать должным образом, повышает вероятность заболевания раком молочной железы и некоторыми другими видами рака. Однако если этот ген еще и метилирован, то, скорее всего, вы умрете, поскольку ваша иммунная система будет отключена. Метилирование может еще больше повысить риск развития рака и сделать его более агрессивным (Catteau et al., 2002), (Прайзенданк и др., 2020).
- Модификация гистонов - это добавление или удаление химических групп из гистонов, которые представляют собой белки, обволакивающие ДНК и образующие структуру, называемую хроматином. В зависимости от типа и расположения химических групп модификация гистонов может сделать хроматин более плотно или более рыхло упакованным, влияя на то, насколько ДНК открыта или скрыта от белков, которые ее считывают. Модификация гистонов может влиять на гены, регулирующие клеточный цикл, апоптоз или ангиогенез. Например, мутация в гене p53, препятствующая его нормальной работе, повышает вероятность возникновения различных видов рака. Однако если этот ген еще и модифицирован гистонами, то это может еще больше повысить риск развития рака или сделать его более устойчивым к лечению (см.Юэ и др., 2017).
- Некодирующая РНК: Это происходит, когда молекулы некодирующей РНК присоединяются к кодирующей РНК, которая используется для создания белков. Некодирующая РНК может способствовать разрушению кодирующей РНК или привлекать молекулы, которые модифицируют гистоны, влияя на экспрессию генов. Некодирующая РНК может влиять на гены, контролирующие дифференцировку клеток, инвазию или метастазирование. Например, мутация в гене KRAS, препятствующая его нормальной работе, повышает риск заболевания колоректальным раком. Однако если этот ген также регулируется некодирующей РНК, то это может еще больше повысить риск развития рака или затруднить его лечение (см.Салиани и др., 2022).
Эпигенетические изменения и их влияние в зависимости от диеты и питания
Диетические компоненты | Эпигенетические изменения | Источники |
Антиоксиданты | Антиоксиданты - это молекулы, способные нейтрализовать свободные радикалы, которые могут повреждать ДНК и гистоны. Антиоксиданты могут модулировать эпигенетические изменения, влияя на метилирование ДНК и модификации гистонов. | Beetch et al., 2020 |
Фолиевая кислота | Фолат - витамин группы В, участвующий в синтезе ДНК и РНК. Фолат может влиять на эпигенетические изменения, обеспечивая метильные группы для метилирования ДНК. Дефицит фолата может нарушать метилирование ДНК и повышать риск развития различных заболеваний, таких как рак, дефекты нервной трубки и когнитивные нарушения. | Крайдер и др., 2012 |
Ограничение калорийности | Ограничение калорийности рациона - это диетическое вмешательство, которое позволяет снизить потребление калорий, не вызывая при этом недоедания, за счет снижения уровня различных факторов, таких как воспаление, окислительный стресс и базальная скорость метаболизма. Ограничение калорийности может влиять на эпигенетические изменения, изменяя экспрессию и активность ферментов, участвующих в метилировании ДНК и модификации гистонов. | Генсус и др., 2019 |
Волокно | Клетчатка - это тип углеводов, который не усваивается ферментами человека, но может ферментироваться бактериями кишечника. Клетчатка может влиять на эпигенетические изменения, воздействуя на состав и функционирование микробиоты кишечника, которая может вырабатывать метаболиты, модулирующие метилирование ДНК и модификации гистонов. | Choi et al., 2010 |
Пробиотики | Пробиотики могут влиять на эпигенетические изменения путем воздействия на состав и функционирование микробиоты кишечника, которая может продуцировать метаболиты, модулирующие метилирование ДНК и модификации гистонов. Пробиотики также могут модулировать экспрессию генов, участвующих в воспалении, иммунитете и метаболизме. | (Борзабади и др., 2018), (Ye et al., 2017) |
Пребиотики | Пребиотики - это неперевариваемые углеводы, которые избирательно стимулируют рост и/или активность полезных бактерий кишечника. Пребиотики могут влиять на эпигенетические изменения, воздействуя на состав и функционирование микробиоты кишечника, которая может продуцировать метаболиты, модулирующие метилирование ДНК и модификации гистонов. Пребиотики также могут модулировать экспрессию генов, участвующих в воспалении, иммунитете и метаболизме. | Ye et al., 2017 |
Antioxidants’ effect on gene expression.
Приведем несколько примеров - это не полный список всех эффектов, а лишь пример:
- Антиоксиданты могут предотвратить или обратить вспять процесс метилирования ДНК. Метилирование ДНК может происходить под воздействием свободных радикалов или токсинов. Антиоксиданты могут блокировать этот процесс или удалять метильную группу, восстанавливая функцию гена.
- Антиоксиданты могут модулировать модификации гистонов. Антиоксиданты могут влиять на ферменты, которые производят эти модификации, изменяя структуру хроматина.
- Антиоксиданты могут регулировать некодирующую РНК. Антиоксиданты могут влиять на производство или активность некодирующей РНК, изменяя регуляцию генов.
- Антиоксиданты способны предотвращать или восстанавливать повреждения ДНК и восстанавливать нормальную экспрессию генов, предотвращая или замедляя развитие рака.
В таблице ниже приведены некоторые антиоксиданты и их влияние на экспрессию генов. Это не полный список, а лишь некоторые примеры, которые были исследованы учеными. В таблице приведены тысячи различных фитохимических веществ и вы должны или не должны быть в состоянии исследовать их все. Необходимо стремиться к увеличению общая ценность рациона по шкале ORAC за счет питания и не идти по пути индивидуальных дополнительных антиоксидантов. Фитохимические вещества действуют синергетически как комплекс химических веществ из цельных пищевых источников, где 2 плюс 2 равно 15. В таблице я привел некоторые антиоксиданты в качестве примера.
Антиоксидант | Влияние на эпигенетику | Источник |
Куркумин | Куркумин - это противовоспалительный, антиоксидантный и противораковый полифенол, получаемый из куркумы. Куркумин может ингибировать ДНК-метилтрансферазы (DNMT) и гистоновые деацетилазы (HDAC), вызывая реактивацию генов-супрессоров опухолей и подавление онкогенов. Куркумин также может изменять структуру хроматина и экспрессию генов, индуцируя ацетилирование и метилирование гистонов. Куркумин может модулировать микроРНК (miRNAs) и длинные некодирующие РНК (lncRNAs), которые являются мишенями для генов, участвующих в воспалении, апоптозе, клеточном цикле, инвазии и метастазировании. | Bhattacharjee et al., 2020 |
Ресвератрол | Ресвератрол - природный полифенол, содержащийся в винограде, красном вине, ягодах и арахисе и обладающий антиоксидантным, противовоспалительным и противораковым действием. Ресвератрол способен ингибировать DNMT и HDAC, что приводит к деметилированию и реактивации генов-супрессоров опухолей и снижению регуляции онкогенов. Ресвератрол также может индуцировать ацетилирование и метилирование гистонов, влияя на структуру хроматина и экспрессию генов. Ресвератрол может регулировать миРНК и lncRNA, которые направлены на гены, участвующие в окислительном стрессе, воспалении, апоптозе, аутофагии, сенисценции, ангиогенезе и метастазировании. | Гриньян-Ферре и др., 2020 |
Апигенин | Апигенин - природный флавоноид, получаемый из цветков ромашки, апельсинов, петрушки, сельдерея и других природных источников, обладающий антиоксидантными, противовоспалительными и противораковыми свойствами. Апигенин способен ингибировать DNMT и HDAC, что приводит к деметилированию и реактивации генов-супрессоров опухолей и снижению регуляции онкогенов. Апигенин также может индуцировать ацетилирование и метилирование гистонов, изменяя структуру хроматина и экспрессию генов. Апигенин может регулировать миРНК, которые направлены на гены, участвующие в клеточном цикле, апоптозе, инвазии, метастазировании, ангиогенезе и стволовых процессах. | Bhattacharjee et al., 2020 |
Сульфорафан | Сульфорафан - это природный изотиоцианат, получаемый из крестоцветных овощей, таких как брокколи, Капуста и кейл обладают антиоксидантными, противовоспалительными и противораковыми свойствами. Сульфорафан может ингибировать DNMT и HDAC, что приводит к деметилированию и реактивации генов-супрессоров опухолей и снижению регуляции онкогенов. Сульфорафан также может индуцировать ацетилирование и метилирование гистонов, изменяя структуру хроматина и экспрессию генов. Сульфорафан может регулировать миРНК и lncRNA, которые направлены на гены, участвующие в воспалении, апоптозе, клеточном цикле, инвазии и метастазировании. | Bhattacharjee et al., 2020 |
Урсоловая кислота | Урсоловая кислота - природный пентациклический тритерпеноид, содержащийся в различных фруктах, травах и специях и обладающий антиоксидантным, противовоспалительным и противораковым действием. Урсоловая кислота способна ингибировать DNMT и HDAC, что приводит к деметилированию и реактивации генов-супрессоров опухолей и снижению регуляции онкогенов. Урсоловая кислота также может индуцировать ацетилирование и метилирование гистонов, влияя на структуру хроматина и экспрессию генов. Урсоловая кислота может регулировать миРНК, которые направлены на гены, участвующие в клеточном цикле, апоптозе, инвазии, метастазировании, ангиогенезе и стволовых процессах. | Bhattacharjee et al., 2020 |
Аллицин | Аллицин - природное соединение серы, получаемое из чеснок, обладающий противомикробным, антиоксидантным, противовоспалительным и противораковым действием. Аллицин может подавлять активность ДНК-гиразы у бактерий, что приводит к торможению репликации и транскрипции ДНК. Аллицин также может окислять остатки цистеина в белках, влияя на их структуру и функции. Аллицин может регулировать миРНК, которые нацелены на гены, участвующие в клеточном цикле, апоптозе, инвазии, метастазировании, ангиогенезе и стволовых процессах. | Чхабрия и др., 2015 |
Существует еще множество антиоксидантов, способных влиять на экспрессию генов. Если вы хотите узнать больше, то можете поискать соответствующие статьи.
Возможно, вы также задаетесь вопросом, откуда можно получить антиоксиданты. Хорошая новость заключается в том, что они содержатся в основном в растениях, и есть растения, которые очень богаты антиоксидантами. Узнайте свои показатели ORAC.
Влияние фолатов на экспрессию генов.
Фолат - это витамин группы В, участвующий в синтезе ДНК и РНК. Фолат необходим клеткам для правильного роста и деления. Фолат можно получить из таких продуктов, как листовая зелень, бобы, орехи, яйца и обогащенные злаки. Проблема в том, что это один из самых распространенных недостатки в стандартной американской диете. Люди, употребляющие цельнозерновую растительную пищу, обычно не испытывают дефицита фолатов и не нуждаются в дополнительном приеме фолиевой кислоты.
Приведем несколько примеров:
- Фолат обеспечивает метильные группы (одна углеродная группа) для метилирования ДНК (Крайдер и др., 2012). Фолат является одним из основных источников метильных групп для этого процесса. Дефицит фолатов может нарушать метилирование ДНК и вызывать аномальную экспрессию генов.
- Фолат влияет на закрытие нервной трубки. Нейронная трубка - это структура, формирующая головной и спинной мозг у эмбриона. Для нормального развития нервной трубки необходимо, чтобы она правильно закрывалась. Фолат необходим для этого процесса, поскольку он влияет на экспрессию генов, участвующих в закрытии нервной трубки (Saitsu et al., 2017). Дефицит фолатов может препятствовать закрытию нервной трубки и вызывать такие врожденные дефекты, как spina bifida.
- Фолат важен для когнитивных функций, поскольку влияет на экспрессию генов, участвующих в развитии и функционировании мозга. Дефицит фолатов может ухудшать когнитивные функции и повышать риск развития деменции.
Вот некоторые из эффектов фолатов на эпигенетику и почему они важны для вашего здоровья и развития. Возможно, вы задаетесь вопросом, сколько фолатов вам необходимо и откуда их можно получить. Вот несколько советов:
- RDA для фолатов составляет 400 мкг для взрослых и 600 мкг для беременных женщин.
- Фолаты можно получить из таких продуктов питания, как листовая зелень, бобы, орехи, яйца и обогащенные зерновые. При дефиците или повышенной потребности в фолатах можно принимать добавки.
- Не следует принимать слишком много фолатов, так как они могут маскировать витамин Дефицит витамина В12 или взаимодействовать с некоторыми лекарственными препаратами.
- Кроме того, фолиевая кислота - это не то же самое, что фолат. Нам необходимы фолаты, но добавки состоят из фолиевой кислоты. Наша печень, в отличие от печени крыс в животной модели, не способна за один день превратить в фолат более 400 мг фолиевой кислоты. Именно поэтому большинство добавок не превышают 400 мг фолиевой кислоты.
Влияние ограничения калорийности на экспрессию генов.
Ограничение калорийности питания - это снижение потребления калорий, не приводящее к недоеданию. Ограничение калорийности может влиять на количество вырабатываемой некодирующей РНК или на ее взаимодействие с кодирующей РНК (Абрахам и др., 2017). Ограничение калорийности также может регулировать циркадный ритм экспрессии генов в различных органах и тканях (Патель и др., 2016).
Такое влияние ограничения калорийности на эпигенетику может иметь различные преимущества для здоровья и старения. Например:
- Ограничение калорийности пищи может замедлить старение путем модуляции различных путей, таких как воспаление (Gabandé-Rodríguez et al., 2019), окислительного стресса, метаболизма и аутофагии (Багерния и др., 2018).
- Ограничение калорийности рациона также может увеличить продолжительность жизни за счет повышения экспрессии генов, защищающих от повреждения и гибели клеток (Komatsu T et al., 2019).
В ходе нашей нормальной эволюции мы были вынуждены ограничивать калорийность пищи в нормальная среда обитания для всех наших предков-гомининов, обусловленная дефицитом. Our body’s response to restriction is to repair itself by destroying bad or mutated or precancerous cells first for energy and by slowing down metabolism. When you slow down your metabolism you burn less energy, have lower oxidative stress and you live longer. And calorie restriction also has effects on gene expression. Our body is used to havening it and expects it as a normal part of life. Lacking autophagy directly leads to cancer risk. A цельнопищевая растительная диета, естественно, более склонна к ограничению калорийности обеспечивая меньшее количество калорий по сравнению со стандартной американской диетой (SAD) и при этом удовлетворяя потребности в питательных веществах (Грегер, 2020). С другой стороны, SAD вызывает избыток калорий за счет употребления масла и сахара, а также высокоаппетитной пищи, что может нарушать экспрессию генов и повышать риск заболеваний.
Влияние клетчатки на экспрессию генов.
Клетчатка - это тип углеводов, который не усваивается непосредственно нашими ферментами, а попадает в толстую кишку, где ферментируется бактериями кишечника. Клетчатка помогает регулировать пищеварение, снижать уровень холестерина и предотвращать запоры.
Бактерии, ферментирующие клетчатку, являются симбиотическими и полезными для нашей иммунной системы и организма, в отличие от непробиотических бактерий, гниющих в мясе. Эта бактерия, питающаяся мясом, в течение нескольких часов разлагает съеденную вами пищу в толстом кишечнике, вызывая воспаление. Мясо есть мясо, и ваше тоже вкусное.
Клетчатку можно получить из таких продуктов, как фрукты, овощи, зерновые, бобы и орехи.
Приведем несколько примеров:
- Клетчатка может влиять на состав и функции микробиоты кишечника, обеспечивая пробиотические бактерии пищей и стимулируя их рост и активность в отношении мясоедных непробиотических бактерий (Макки и др., 2018).
- Волокно влияет на метаболиты, вырабатываемые микробиотой кишечника. Метаболиты - это вещества, которые вырабатываются или потребляются микробиотой кишечника. Они могут попадать в кровь и воздействовать на органы и ткани. Клетчатка может влиять на тип и количество метаболитов, вырабатываемых микробиотой кишечника, стимулируя пробиотические бактерии и снижая метаболические процессы непробиотических мясоедных бактерий в толстой кишке (см.Макки и др., 2018).
- Эти метаболиты могут влиять на эпигенетическую регуляцию, изменяя доступность или активность химических доноров или ферментов, контролирующих метилирование ДНК и модификацию гистонов. Эти эпигенетические изменения могут привести к изменению экспрессии генов, участвующих в воспалении, иммунитете и метаболизме.
- Клетчатка может защищать от ожирения и диабета, модулируя экспрессию генов, участвующих в гомеостазе глюкозы, липидном обмене и расходовании энергии.
- Клетчатка может улучшать иммунную функцию. Хроническое воспаление может быть следствием дисбаланса микробиоты кишечника или нарушения барьерной функции кишечника. Fiber can improve immune function and prevent infections by modulating the expression of genes involved in inflammation, immunity, and barrier function and by downregulating the activity and number of non-probiotic bacteria in the microbiota colony. Fiber can also stimulate the production of antibodies and cytokines that help fight off germs.
Рекомендуемое пищевое потребление (RDI) клетчатки составляет 25 г в день для женщин и 38 г в день для мужчин. Это только RDA для SAD. В антропологическом смысле наши предки-гоминины потребляли гораздо больше. В отношении клетчатки действует одно правило: больше - значит лучше. Проблема в том, что мы не хотим вздутия живота, газов и постоянного учащенного опорожнения кишечника. Нам также не нравится неприятная текстура клетчатки без вкуса, поэтому мы предпочитаем ее не есть.
В представленном ниже видеоролике Одед Рехави, доктор философии, профессор нейробиологии Тель-Авивского университета, специалист по вопросам наследования генов, формирования генов в результате переживаний и, что примечательно, передачи некоторых воспоминаний о переживаниях через гены потомству. Он рассказывает о своих исследованиях, опровергающих давно известные постулаты о генетическом наследовании, и об их значимости для понимания ключевых биологических и психологических процессов, включая метаболизм, стресс и травмы. Он описывает историю научного исследования "наследственности приобретенных признаков" и то, как эпигенетика и РНК-биология могут объяснить прохождение некоторых видов памяти, основанных на опыте.
Заключение:
Это обширная тема, которая находится на переднем крае научных исследований последних двух десятилетий. В этой статье я попытался дать краткое изложение, прежде чем мы перейдем к рассмотрению некоторых конкретных сценариев в статьях, связанных с ними.
Это лишь некоторые примеры эпигенетических изменений и их влияния на риск развития рака. Эпигенетические изменения могут вызывать и другие факторы, например, курение, физические нагрузки, стресс, наркотики, загрязнение окружающей среды или травмы.
Суть в том, что ваши гены не фиксированы. Вы можете изменить их своим выбором, и для этого необходимо выбирать диету, богатую антиоксидантами и клетчаткой, избегая биоаккумуляции мутагенов и токсинов в пищевой цепи. Необходимо избегать чрезмерно калорийных и плотных диет, лишенных питательных веществ, и сочетать ограничение калорийности с прерывистым голоданием, а также избегать перенапряжения эндокринной системы избыточным потреблением белка. Существует высокий уровень correlation between overall cancer risk and chronically elevated IGF-1 levels (за счет высококачественного белкового питания с преобладанием SAD).
Поэтому делайте разумный выбор, который защитит экспрессию ваших генов и снизит риск развития рака. Мой совет - не ждать еще пятьдесят лет, пока рекомендации изменятся, как это было с курением. В ваших силах изменить не только свои гены, но и гены своих детей.
- Классическая генетика не могла объяснить всего, что привело к созданию молекулярной биологии.
- Эпигенетика бросила вызов предположениям и догмам генетики и молекулярной биологии.
- Эпигенетика раскрывает механизмы, регулирующие экспрессию генов без изменения последовательности ДНК.
- Важны не гены, а то, как они себя выражают.
- Химические модификации ДНК или гистонов могут влиять на доступ к генам и их использование.
- Модификации могут быть добавлены или удалены ферментами в зависимости от различных факторов.
- Изменения могут передаваться дочерним клеткам или даже детям в процессе репродукции.
- Эпигенетика может влиять на признаки, не кодируемые ДНК самостоятельно, такие как поведение, предрасположенность к заболеваниям и старение.
- Под экспрессией генов понимается частота или время создания белков на основе инструкций, заложенных в генах.
- Транскрипция может включаться или выключаться в зависимости от различных факторов, что позволяет организму адаптироваться к различным ситуациям.
- Рак включает в себя тысячи мутаций в геноме и эпигеноме.
- Генетическая предрасположенность - это лишь один из аспектов рака.
- Экспрессия генов под влиянием диеты и окружающей среды может включать генетическую предрасположенность к раку.
- Эпигенетические изменения могут влиять на риск развития рака и реакцию на лечение.
- Высокая заболеваемость раком в западных обществах со стандартной американской диетой обусловлена экспрессией генов, а не плохими генами.
- Метилирование ДНК блокирует доступ к генам, выключая их и деактивируя иммунную систему.
- Метилирование может повышать риск развития рака и делать его более агрессивным.
- Модификация гистонов может влиять на гены, регулирующие клеточный цикл, апоптоз или ангиогенез.
- Мутации в различных генах повышают риск развития рака, но дополнительная регуляция через метилирование, модификацию гистонов или некодирующую РНК может еще больше увеличить риск или затруднить лечение рака.
- Антиоксиданты могут предотвратить или обратить вспять метилирование ДНК, вызванное свободными радикалами или токсинами.
- Антиоксиданты могут модулировать модификации гистонов, воздействуя на ферменты и изменяя структуру хроматина.
- Антиоксиданты могут регулировать некодирующую РНК, изменяя регуляцию генов.
- Антиоксиданты способны предотвращать или восстанавливать повреждения ДНК и восстанавливать нормальную экспрессию генов, замедляя развитие рака.
- Фолат обеспечивает метильные группы для метилирования ДНК.
- Дефицит фолатов может нарушать метилирование ДНК и вызывать аномальную экспрессию генов.
- Дефицит фолатов может ухудшать когнитивные функции и повышать риск развития деменции.
- Фолиевая кислота - это не то же самое, что фолат.
- Ограничение калорийности рациона замедляет старение и модулирует воспаление, окислительный стресс, метаболизм и пути аутофагии.
- Ограничение калорийности пищи повышает экспрессию генов, защищающих от повреждения и гибели клеток.
- Ограничение калорий было нормальной частью нашей эволюции в связи с дефицитом.
- Наш организм реагирует на ограничение питания самовосстановлением и замедлением обмена веществ.
- Диета на основе цельных растительных продуктов естественным образом приводит к ограничению калорийности рациона и при этом удовлетворяет потребности в питательных веществах.
- Стандартная американская диета (SAD) приводит к избытку калорий и повышению риска заболеваний из-за содержания масла, сахара и продукты с высокими вкусовыми качествами.
- Клетчатка влияет на микробиоту кишечника, стимулируя пробиотические бактерии и снижая численность непробиотических бактерий, питающихся мясом.
- Метаболиты, продуцируемые микробиотой кишечника, могут оказывать влияние на органы и ткани, а клетчатка может влиять на тип и количество этих метаболитов.
- Волокно может модулировать эпигенетическую регуляцию и изменять экспрессию генов, участвующих в воспалении, иммунитете и метаболизме.
- Клетчатка может защищать от ожирения и диабета, модулируя экспрессию генов, участвующих в гомеостазе глюкозы, липидном обмене и расходе энергии.
- Клетчатка может улучшать иммунную функцию за счет модуляции экспрессии генов, участвующих в воспалении, иммунитете и барьерной функции, а также за счет снижения количества непробиотических бактерий.
- Клетчатка может стимулировать выработку антител и цитокинов для борьбы с микробами.
- Больше клетчатки обычно лучше.
- Слишком большое количество клетчатки может вызвать вздутие живота, газообразование и учащенное опорожнение кишечника.
- Существует множество факторов, способных вызвать эпигенетические изменения, например курение, физические нагрузки, стресс, наркотики, загрязнение окружающей среды или травмы.
- Ваши гены не фиксированы и могут изменяться под влиянием вашего выбора.
- Рекомендуется диета, богатая антиоксидантами и клетчаткой, при этом следует избегать биоаккумуляция мутагенов и токсинов в пищевой цепи.
- Следует избегать чрезмерно калорийных диет и диет с недостатком питательных веществ, и рекомендуется ограничение калорийности пищи с использованием прерывистого голодания.
- Чрезмерное потребление белка может привести к сверхэкспрессии IGF1 и повышению риска развития рака.
Часто Задаваемые Вопросы
Ссылки:
- Peixoto, P., Cartron, P. F., Serandour, A. A., & Hervouet, E. (2020). From 1957 to Nowadays: A Brief History of Epigenetics. Международный журнал молекулярных наук, 21(20), 7571. https://doi.org/10.3390/ijms21207571
- What is Epigenetics? | CDC. (2022, August 15). Centers for Disease Control and Prevention. https://www.cdc.gov/genomics/disease/epigenetics.htm
- LaPelusa, A., & Kaushik, R. (2022). Physiology, Proteins. In StatPearls. StatPearls Publishing. [Опубликованный]
- Blackwell, T. K., & Walker, A. K. (2006). Transcription mechanisms. WormBook : the online review of C. elegans biology, 1–16. https://doi.org/10.1895/wormbook.1.121.1
- Hamilton J. P. (2011). Epigenetics: principles and practice. Digestive diseases (Basel, Switzerland), 29(2), 130–135. https://doi.org/10.1159/000323874
- Fanucchi, S., Domínguez-Andrés, J., Joosten, L. A. B., Netea, M. G., & Mhlanga, M. M. (2021). The Intersection of Epigenetics and Metabolism in Trained Immunity. Immunity, 54(1), 32–43. https://doi.org/10.1016/j.immuni.2020.10.011
- Surace, A. E. A., & Hedrich, C. M. (2019). The Role of Epigenetics in Autoimmune/Inflammatory Disease. Frontiers in immunology, 10, 1525. https://doi.org/10.3389/fimmu.2019.01525
- Denhardt, D. T. (2018). Effect of stress on human biology: Epigenetics, adaptation, inheritance, and social significance. Journal of Cellular Physiology, 233(3), 1975–1984. https://doi.org/10.1002/jcp.25837
- de Magalhães-Barbosa, M. C., Prata-Barbosa, A., & da Cunha, A. J. L. A. (2022). Toxic stress, epigenetics and child development. Jornal de pediatria, 98 Suppl 1(Suppl 1), S13–S18. https://doi.org/10.1016/j.jped.2021.09.007
- Cavalli, G., & Heard, E. (2019). Advances in epigenetics link genetics to the environment and disease. Природа, 571(7766), 489–499. https://doi.org/10.1038/s41586-019-1411-0
- Brena, R. M., & Costello, J. F. (2007). Genome-epigenome interactions in cancer. Human molecular genetics, 16 Spec No 1, R96–R105. https://doi.org/10.1093/hmg/ddm073
- Shen, H., & Laird, P. W. (2013). Interplay between the cancer genome and epigenome. Ячейка, 153(1), 38–55. https://doi.org/10.1016/j.cell.2013.03.008
- Hullar, M. A., & Fu, B. C. (2014). Diet, the gut microbiome, and epigenetics. Cancer journal (Sudbury, Mass.), 20(3), 170–175. https://doi.org/10.1097/PPO.0000000000000053
- Abdul, Q. A., Yu, B. P., Chung, H. Y., Jung, H. A., & Choi, J. S. (2017). Epigenetic modifications of gene expression by lifestyle and environment. Archives of pharmacal research, 40(11), 1219–1237. https://doi.org/10.1007/s12272-017-0973-3
- Catteau, A., & Morris, J. S. (2002). BRCA1 methylation: a significant role in tumour development? Seminars in Cancer Biology, 12(5), 359–371. https://doi.org/10.1016/s1044-579x(02)00056-1
- Prajzendanc, K., Domagała, P., Hybiak, J., Ryś, J., Huzarski, T., Szwiec, M., Tomiczek-Szwiec, J., Redelbach, W., Sejda, A., Gronwald, J., Kluz, T., Wiśniowski, R., Cybulski, C., Łukomska, A., Białkowska, K., Sukiennicki, G., Kulczycka, K., Narod, S. A., Wojdacz, T. K., Lubiński, J., … Jakubowska, A. (2020). BRCA1 promoter methylation in peripheral blood is associated with the risk of triple-negative breast cancer. Международный журнал по онкологии, 146(5), 1293–1298. https://doi.org/10.1002/ijc.32655
- Yue, X., Zhao, Y., Xu, Y., Zheng, M., Feng, Z., & Hu, W. (2017). Mutant p53 in Cancer: Accumulation, Gain-of-Function, and Therapy. Journal of molecular biology, 429(11), 1595–1606. https://doi.org/10.1016/j.jmb.2017.03.030
- Saliani, M., Jalal, R., & Javadmanesh, A. (2022). Differential expression analysis of genes and long non-coding RNAs associated with KRAS mutation in colorectal cancer cells. Scientific reports, 12(1), 7965. https://doi.org/10.1038/s41598-022-11697-5
- Beetch, M., Harandi-Zadeh, S., Shen, K., Lubecka, K., Kitts, D. D., O’Hagan, H. M., & Stefanska, B. (2020). Dietary antioxidants remodel DNA methylation patterns in chronic disease. Британский журнал фармакологии, 177(6), 1382–1408. https://doi.org/10.1111/bph.14888
- Crider, K. S., Yang, T. P., Berry, R. J., & Bailey, L. B. (2012). Folate and DNA methylation: a review of molecular mechanisms and the evidence for folate’s role. Достижения в области питания (Бетесда, Мэриленд), 3(1), 21–38. https://doi.org/10.3945/an.111.000992
- Gensous, N., Franceschi, C., Santoro, A., Milazzo, M., Garagnani, P., & Bacalini, M. G. (2019). The Impact of Caloric Restriction on the Epigenetic Signatures of Aging. Международный журнал молекулярных наук, 20(8), 2022. https://doi.org/10.3390/ijms20082022
- Choi, S. W., & Friso, S. (2010). Epigenetics: A New Bridge between Nutrition and Health. Достижения в области питания (Бетесда, Мэриленд), 1(1), 8–16. https://doi.org/10.3945/an.110.1004
- Borzabadi, S., Oryan, S., Eidi, A., Aghadavod, E., Daneshvar Kakhaki, R., Tamtaji, O. R., Taghizadeh, M., & Asemi, Z. (2018). The Effects of Probiotic Supplementation on Gene Expression Related to Inflammation, Insulin and Lipid in Patients with Parkinson’s Disease: A Randomized, Double-blind, PlaceboControlled Trial. Archives of Iranian medicine, 21(7), 289–295. [Опубликованный]
- Ye, J., Wu, W., Li, Y., & Li, L. (2017). Influences of the Gut Microbiota on DNA Methylation and Histone Modification. Болезни органов пищеварения и науки, 62(5), 1155–1164. https://doi.org/10.1007/s10620-017-4538-6
- Bhattacharjee, S., & Dashwood, R. H. (2020). Epigenetic Regulation of NRF2/KEAP1 by Phytochemicals. Антиоксиданты (Базель, Швейцария), 9(9), 865. https://doi.org/10.3390/antiox9090865
- Griñán-Ferré, Christian, et al. “Dietary Antioxidants, Epigenetics, and Brain Aging: A Focus on Resveratrol.” Oxidative Stress and Dietary Antioxidants in Neurological Diseases, edited by Colin R. Martin and Victor R. Preedy, Academic Press, 2020, pp. 343-57 https://doi.org/10.1016/B978-0-12-817780-8.00022-0
- Chhabria, S. V., Akbarsha, M. A., Li, A. P., Kharkar, P. S., & Desai, K. B. (2015). In situ allicin generation using targeted alliinase delivery for inhibition of MIA PaCa-2 cells via epigenetic changes, oxidative stress and cyclin-dependent kinase inhibitor (CDKI) expression. Apoptosis : an international journal on programmed cell death, 20(10), 1388–1409. https://doi.org/10.1007/s10495-015-1159-4
- Crider, K. S., Yang, T. P., Berry, R. J., & Bailey, L. B. (2012). Folate and DNA methylation: a review of molecular mechanisms and the evidence for folate’s role. Достижения в области питания (Бетесда, Мэриленд), 3(1), 21–38. https://doi.org/10.3945/an.111.000992
- Saitsu, H. (2017). Folate receptors and neural tube closure. Congenital Anomalies, 57(5), 130–133. https://doi.org/10.1111/cga.12218
- Abraham, K. J., Ostrowski, L. A., & Mekhail, K. (2017). Non-Coding RNA Molecules Connect Calorie Restriction and Lifespan. Journal of molecular biology, 429(21), 3196–3214. https://doi.org/10.1016/j.jmb.2016.08.020
- Patel, S. A., Velingkaar, N., Makwana, K., Chaudhari, A., & Kondratov, R. (2016). Calorie restriction regulates circadian clock gene expression through BMAL1 dependent and independent mechanisms. Scientific reports, 6, 25970. https://doi.org/10.1038/srep25970
- Gabandé-Rodríguez, E., Gómez de Las Heras, M. M., & Mittelbrunn, M. (2019). Control of Inflammation by Calorie Restriction Mimetics: On the Crossroad of Autophagy and Mitochondria. Cells, 9(1), 82. https://doi.org/10.3390/cells9010082
- Bagherniya, M., Butler, A. E., Barreto, G. E., & Sahebkar, A. (2018). The effect of fasting or calorie restriction on autophagy induction: A review of the literature. Обзоры исследований старения, 47, 183–197. https://doi.org/10.1016/j.arr.2018.08.004
- Komatsu, T., Park, S., Hayashi, H., Mori, R., Yamaza, H., & Shimokawa, I. (2019). Mechanisms of Calorie Restriction: A Review of Genes Required for the Life-Extending and Tumor-Inhibiting Effects of Calorie Restriction. Питательные вещества, 11(12), 3068. https://doi.org/10.3390/nu11123068
- Greger M. (2020). A Whole Food Plant-Based Diet Is Effective for Weight Loss: The Evidence. Американский журнал медицины образа жизни, 14(5), 500–510. https://doi.org/10.1177/1559827620912400
- Makki, K., Deehan, E. C., Walter, J., & Bäckhed, F. (2018). The Impact of Dietary Fiber on Gut Microbiota in Host Health and Disease. Cell host & microbe, 23(6), 705–715. https://doi.org/10.1016/j.chom.2018.05.012
Похожие Записи
У вас есть какие-либо вопросы о питании и здоровье?
Я хотел бы услышать ваше мнение и ответить на них в моем следующем посте. Я ценю ваш вклад и мнение и с нетерпением жду вашего скорого ответа. Я также приглашаю вас следовать за нами на Facebook, Instagram и Pinterest для получения дополнительной информации о диетах, питании и здоровье. Там можно оставить комментарий и пообщаться с другими приверженцами здорового образа жизни, поделиться своими советами и опытом, а также получить поддержку и ободрение от нашей команды и сообщества.
Я надеюсь, что эта статья была для вас познавательной и приятной и что вы готовы применить полученные знания. Если эта статья оказалась полезной, пожалуйста поделиться с друзьями и родственниками, которым это может быть полезно. Никогда не знаешь, кому может понадобиться совет и поддержка на пути к здоровью.
– Вам Также Может Понравиться –
Узнайте о Питании
Милош Покимица - доктор естественной медицины, клинический диетолог, автор статей о здоровье и питании и консультант по вопросам питания. Автор серии книг Стать веганом? Обзор науки, он также управляет веб - сайтом natural health GoVeganWay.com
Медицинский Отказ от Ответственности
GoVeganWay.com предлагает вам обзоры последних исследований, связанных с питанием и здоровьем. Предоставленная информация представляет собой личное мнение автора и не предназначена и не подразумевается в качестве замены профессиональной медицинской консультации, диагностики или лечения. Предоставленная информация предназначена исключительно для информационных целей и не предназначена для замены консультации, диагностики и/или лечения у квалифицированного врача или поставщика медицинских услуг.НИКОГДА НЕ ПРЕНЕБРЕГАЙТЕ ПРОФЕССИОНАЛЬНЫМИ МЕДИЦИНСКИМИ СОВЕТАМИ И НЕ ОТКЛАДЫВАЙТЕ ОБРАЩЕНИЕ ЗА МЕДИЦИНСКОЙ ПОМОЩЬЮ ИЗ-ЗА ТОГО, ЧТО ВЫ ЧТО-ТО ПРОЧИТАЛИ Или ПОЛУЧИЛИ ДОСТУП Через GoVeganWay.com
НИКОГДА НЕ МЕНЯЙТЕ ОБРАЗ ЖИЗНИ Или КАКИЕ-ЛИБО ИЗМЕНЕНИЯ ВООБЩЕ ВСЛЕДСТВИЕ ТОГО, ЧТО ВЫ ПРОЧИТАЛИ В GoVeganWay.com ДО КОНСУЛЬТАЦИИ С ЛИЦЕНЗИРОВАННЫМ ПРАКТИКУЮЩИМ ВРАЧОМ.
В случае неотложной медицинской помощи немедленно позвоните врачу или 911. GoVeganWay.com не рекомендует и не одобряет какие-либо конкретные группы, организации, тесты, врачей, продукты, процедуры, мнения или другую информацию, которая может быть упомянута внутри.
Выбор редактора –
Милош Покимица - доктор естественной медицины, клинический диетолог, автор статей о здоровье и питании и консультант по вопросам питания. Автор серии книг Стать веганом? Обзор науки, он также управляет веб - сайтом natural health GoVeganWay.com
Последние статьи -
Новости , Основанные на растениях
-
Vietnamese-Style Cucumber Salad
on Январь 16, 2025
-
A New Vegan Drive-Thru Wants To Take On McDonald’s
on Январь 16, 2025
-
Minus Coffee Launches Vanilla Oat Milk Latte Made Without Coffee Beans
on Январь 16, 2025
-
University Of California Rolls Out New Plant-Based Course At All Campuses
on Январь 16, 2025
-
Gochujang Mac And Cheese With Crispy Sesame Tofu
on Январь 16, 2025
-
Need A Protein-Packed Vegan Breakfast? Try This Scrambled Tofu Burrito
on Январь 15, 2025
-
Leading Veterinary Professor: ‘Vegan Diets Can Be Safe For Cats Too!’
on Январь 15, 2025
Главные Новости Эдравоохранения — ScienceDaily
- Child undernutrition may be contributing to global measles outbreaks, researchers findon Январь 16, 2025
Amid a global surge in measles cases, new research suggests that undernutrition may be exacerbating outbreaks in areas suffering from food insecurity. A study involving over 600 fully vaccinated children in South Africa found those who were undernourished had substantially lower levels of antibodies against measles.
- Do parents really have a favorite child? Here’s what new research sayson Январь 16, 2025
A new study found that younger siblings generally receive more favorable treatment from parents. Meanwhile, older siblings are often granted more autonomy, and parents are less controlling towards them as they grow up.
- Fatal neurodegenerative disease in kids also affects the bowelon Январь 15, 2025
Researchers have described the neurodegeneration that occurs in the nervous system of the bowel in Batten disease, a rare and fatal genetic condition. In their latest study, a team showed that gene therapy to the bowel in mice modeling Batten disease reduced symptoms and extended lifespan.
- Ultrasound-directed microbubbles could boost immune response against tumorson Январь 15, 2025
Researchers have designed process that uses ultrasound to modify the behavior of cancer-fighting T cells by increasing their cell permeability. They targeted freshly isolated human immune cells with tightly focused ultrasound beams and clinically approved contrast agent microbubbles. When hit with the ultrasound, the bubbles vibrate at extremely high frequency, acting as a push-pull on the walls of the T cell’s membranes. This can mimic the T cell’s natural response to the presence of an […]
- Scientists develop tiny anticancer weaponon Январь 15, 2025
A new twist on a decades-old anticancer strategy has shown powerful effects against multiple cancer types in a preclinical study. The experimental approach, which uses tiny capsules called small extracellular vesicles (sEVs), could offer an innovative new type of immunotherapy treatment and is poised to move toward more advanced development and testing.
- Link between gene duplications and deletions within chromosome region and nonsyndromic bicuspid aortic valve diseaseon Январь 15, 2025
Large and rare duplications and deletions in a chromosome region known as 22q11.2 , which involves genes that regulate cardiac development, are linked to nonsyndromic bicuspid aortic valve disease.
- Is eating more red meat bad for your brain?on Январь 15, 2025
People who eat more red meat, especially processed red meat like bacon, sausage and bologna, are more likely to have a higher risk of cognitive decline and dementia when compared to those who eat very little red meat, according to a new study.
Опубликованный, #веганская диета –
- Outcomes of dietary interventions in the prevention and progression of Parkinson’s disease: A literature reviewon Январь 13, 2025
Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by motor and non-motor symptoms, primarily due to the degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Factors contributing to this neuronal degeneration include mitochondrial dysfunction, oxidative stress, and neuronal excitotoxicity. Despite extensive research, the exact etiology of PD remains unclear, with both genetic and environmental factors playing significant roles. […]
- Evolving Appetites: Current Evidence and Future Perspectives in Terms of Meat Substitutes in Europeon Январь 13, 2025
Consumers are increasingly aware of the environmental and health impacts of their food choices, leading to changes in consumption behavior. This study examines the consumption patterns and behaviors of European consumers regarding meat substitutes and identifies factors influencing their acceptance as alternative protein sources. The study involved 5000 participants from four European countries-France, Germany, Italy, and Spain with data extracted from the Mintel consumer database in 2024….
- Ultra-Processed Food and Gut Microbiota: Do Additives Affect Eubiosis? A Narrative Reviewon Январь 11, 2025
The gut microbiota plays a key role in health and disease, but it could be affected by various factors (diet, lifestyle, environment, genetics, etc.). Focusing on diet, while the role of the different styles and choices (Mediterranean vs. Western diet, vegan or vegetarian diets) has been extensively studied, there are a few comprehensive papers on the effects of additives and food processing. Therefore, the main goal of this manuscript is to propose an overview of the link between…
- Effects of Plant-Based Diet on Metabolic Parameters, Liver and Kidney Steatosis: A Prospective Interventional Open-label Studyon Январь 10, 2025
This interventional single-center prospective open-label study aims to evaluate the effects of a vegan diet, compared to a vegetarian and omnivorous diet, on metabolic parameters, insulin sensitivity, and liver and kidney steatosis in healthy adults. The study included 53 omnivorous participants aged 18-40 years, body-mass index 18-30 kg/m2, without any chronic disease, chronic medication use, active smoking, or significant alcohol consumption. All participants were omnivorous at baseline and…
- Randomised double-blind placebo-controlled trial protocol to evaluate the therapeutic efficacy of lyophilised faecal microbiota capsules amended with next-generation beneficial bacteria in…on Январь 9, 2025
BACKGROUND: The spectrum of metabolic dysfunction-associated steatotic liver disease (MASLD) is highly prevalent, affecting 30% of the world’s population, with a significant risk of hepatic and cardiometabolic complications. Different stages of MASLD are accompanied by distinct gut microbial profiles, and several microbial components have been implicated in MASLD pathophysiology. Indeed, earlier studies demonstrated that hepatic necroinflammation was reduced in individuals with MASLD after…
Случайные сообщения –
Популярные сообщения -
Последние новости от PubMed, #растительная диета –
- Selection of Nonlethal Early Biomarkers to Predict Gilthead Seabream (Sparus aurata) Growthby Rafael Angelakopoulos on Январь 16, 2025
One of the main challenges in aquaculture is the constant search for sustainable alternative feed ingredients that can successfully replace fishmeal (FM) without any negative effects on fish growth and health. The goal of the present study was to develop a toolbox for rapidly anticipating the dynamics of fish growth following the introduction of a new feed; nonlethal, biochemical, and molecular markers that provide insights into physiological changes in the fish. A nutritional challenge by…
- Healthy Plant-Based Diet, Genetic Predisposition, and the Risk of Incident Venous Thromboembolismby Jing Guo on Январь 16, 2025
CONCLUSIONS: Adherence to a healthy plant-based dietary pattern could reduce the risk of developing VTE independent of genetic background, lifestyles, sociodemographic features, and multiple morbidities. Our findings underline the importance of diet in VTE prevention interventions.
- Confluence of Plant-Based Dietary Patterns and Polygenic Risk for Venous Thromboembolismby Nikolaos Tsaftaridis on Январь 16, 2025
No abstract
- A proposal on bird focal species selection for higher tier risk assessments of plant protection products in the EUby Benedikt Gießing on Январь 16, 2025
The revised EFSA 2023 Guidance on the risk assessment of plant protection products for birds and mammals emphasises vulnerability as a relevant criterion for focal species (FS) selection rather than prevalence. The EFSA 2023 Guidance suggests to rank FS candidates for each dietary group according to their expected exposure by estimating a species-specific daily dietary dose (DDD). Species experiencing higher exposure would be ranked as potentially more vulnerable and can be identified as FS…
- Association between major dietary patterns and mental health problems among college studentsby Elahe Fayyazi on Январь 15, 2025
CONCLUSION: A strong inverse association was observed between the “plant-based” dietary pattern and depression. While the “Western” dietary pattern was not associated with mental health problems among college students, further prospective studies are warranted.
- Association Between Healthful Plant-Based Dietary Pattern and Obesity Trajectories and Future Cardiovascular Diseases in Middle-Aged and Elderly: A Prospective and Longitudinal Cohort Studyby Zhixing Fan on Январь 15, 2025
We aimed to explore the association between plant-based dietary (PBD) patterns and obesity trajectories in middle-aged and elderly, as well as obesity trajectories linked to cardiovascular disease (CVD) risk. A total of 7108 middle-aged and elderly UK Biobank participants with at least three physical measurements were included. Dietary information collected at enrolment was used to calculate the healthful plant-based diet index (hPDI). Group-based trajectory modeling identified two […]