Экспрессия Генов и Эпигенетика: Как Диета и Окружающая Среда Влияют на Ваше Эдоровье
Автор: Милош Покимица
Медицинская Обзор: Доктор Сюйинь Ван, Доктор Медицинских Наук.
Updated Июнь 10, 2023Основные Выводы:
-Экспрессия генов и эпигенетика - это динамические и отзывчивые процессы, которые регулируют включение или выключение генов в ответ на различные стимулы.
-Диета и окружающая среда - два основных фактора, которые могут влиять на экспрессию генов и эпигенетику, предоставляя питательные вещества, химические вещества или сигналы, которые могут изменять ДНК или белки, взаимодействующие с ней.
– Changes in gene expression can have significant effects on health and disease prevention, by altering the cellular functions, metabolism, inflammation, immunity, and aging of the body.
Введение.
Большинство людей в той или иной степени знакомы с наукой, лежащей в основе генетики. Генетика помогает нам понять, как происходит эволюция, и как мы наследуем черты от наших родителей, и помогает нам в медицине, или антропология понять, как происходила эволюция нашего тела от гомининов до анатомически современного человека.
Но как же эпигенетика? Знакомо ли Вам это понятие? Знаете ли Вы, что гены не являются чем-то неизменным? Знаете ли Вы, как мы можем изменить свою судьбу, воздействуя на свои гены? Это новая и развивающаяся научная область - эпигенетика.
Классическая генетика.
Но как мы к этому пришли? Как мы открыли секреты ДНК и механизмы ее регуляции?
Все началось с монаха Грегора Менделя, жившего в XIX веке. Его интересовало, как растения наследуют такие признаки, как цвет цветка и форма семени. Он проводил эксперименты с горохом, скрещивая их и подсчитывая потомство. Он заметил, что некоторые признаки наследуются по простой схеме, в то время как другие, казалось, смешиваются или исчезают. Он вывел несколько правил, объясняющих его наблюдения, которые мы теперь называем законами наследования Менделя. Он опубликовал свою работу в 1865 г., но это никого не заинтересовало. Он умер, так и не узнав, что стал отцом важнейшей области науки, называемой генетикой.
Перенесемся в начало XX века. Некоторые ученые заново открыли работу Менделя и поняли, что она была гениальной. Они также обнаружили, что хромосомы состоят из ДНК и белков и что они несут единицы наследственности, которые они назвали генами. Они выяснили, как гены расположены на хромосомах, как они могут обмениваться в процессе мейоза (деления клетки) и как они могут мутировать под действием радиации или химических веществ. Они также научились составлять карты генов на хромосомах, используя анализ сцепления и частоты рекомбинации. Это была эпоха классической генетики.
Но возникла проблема. Классическая генетика не могла объяснить всего. Например, как гены контролируют признаки? Как гены взаимодействуют с окружающей средой и насколько она влияет на наш геном? Как гены меняются с течением времени и в разных поколениях? Эти вопросы привели к созданию новой дисциплины, получившей название молекулярной биологии.
Центральная догма.
В 1953 году Джеймс Уотсон и Фрэнсис Крик решили задачу структура ДНК. Она представляла собой двойную спираль, состоящую из четырех нуклеотидов (A, T, C, G), которые спаривались друг с другом определенным образом (A с T, C с G). Они поняли, что такая структура объясняет, как ДНК может хранить информацию (последовательность нуклеотидов), копировать себя (разделяя нити и используя их в качестве шаблонов) и экспрессировать себя (транскрибируясь в РНК и трансформируясь в белки). Эта работа стала "центральная догма молекулярной биологии". Теория утверждает, что генетическая информация течет только в одном направлении - от ДНК к РНК, к белку или от РНК непосредственно к белку. Впервые она была заявлена Фрэнсисом Криком в 1957 году и опубликована в 1958 году.
Но существовала и другая проблема. Молекулярная биология тоже не могла объяснить всего.
Например, как клетки узнали, когда и где включать и выключать гены? Как в процессе развития клетки делятся на разные типы, ведь все они имеют одинаковую ДНК? Как клетки запоминают свою идентичность и историю, что важно для исследования рака? Как клетки реагируют на сигналы, поступающие от других клеток или из окружающей среды?
Рождение эпигенетики.
Эти вопросы привели к зарождению эпигенетики, целью которой стало раскрытие механизмов, регулирующих экспрессию генов без изменения последовательности ДНК.
Термин "эпигенетика" был предложен Конрадом Уоддингтоном еще в 1942 году, но потребовались десятилетия, чтобы он получил научное признание.
Эпигенетика основана на идее о существовании химических модификаций в ДНК или на гистоны (белки, обволакивающие ДНК), которые могут влиять на доступ к генам и их использование клеточным механизмом. Эти модификации могут добавляться или удаляться ферментами в зависимости от различных факторов, таких как тип клетки, стадия развития, экологические сигналы, стресс, диета и т.д. (Peixoto et al., 2020). Эти изменения также могут передаваться дочерним клеткам в процессе деления клеток или даже детям в процессе репродукции.
Это означает, что эпигенетика может влиять на признаки, которые не кодируются только ДНК, такие как поведение, восприимчивость к заболеваниям или старение.
Эпигенетика - одна из самых горячих тем, как и генетика, которая когда-то была еще более горячей. Проблема в том, что большинство людей об этом не слышали, поэтому сохраняется старое убеждение, что гены - это все. Нам необходимо популяризировать новые исследования среди широкой общественности, которая до сих пор считает, что гены - это нечто неизменное и с этим ничего нельзя поделать. Эпигенетика бросает вызов некоторым предположениям и догмам генетики и молекулярной биологии. Она открывает новые возможности для понимания жизни на более глубоком уровне. Она также открывает новые возможности для улучшения медицины и здоровья путем изменения экспрессии генов.
Важны не гены, а то, как они выражают себя.
Что такое экспрессия генов?
Прежде чем мы более подробно рассмотрим эпигенетику с научной точки зрения, давайте поговорим об экспрессии генов.
Экспрессия генов относится к тому, как часто или когда белки создаются на основе инструкций, содержащихся в генах. (Что такое эпигенетика? | CDC, 2022b).
Белки - это строительные блоки. Они выполняют множество функций: строят ткани, борются с инфекциями, регулируют выработку гормонов.Пелуза и др., 2022).
Ваши гены несут в себе информацию о производстве белков, но сами они белки не производят. Им требуется помощь других молекул, таких как РНК и ферменты, считывающие код и производящие белки. Этот процесс называется транскрипцией (Блэквелл и др., 2006).
Транскрипция не всегда включена. Она может включаться или выключаться в зависимости от различных факторов, таких как сигналы от других клеток, гормоны или питательные вещества. Так наш организм адаптируется к различным ситуациям.
Например, когда вы голодны, в организме включаются гены, заставляющие ферменты расщеплять пищу и высвобождать энергию. Когда вы наедаетесь, организм отключает эти гены и включает гены, откладывающие избыток энергии в виде жира.
Почему эпигенетика имеет значение?
Epi в переводе с греческого означает "над" или "на вершине". Важны не гены, а то, что они выражают.
Все ваши клетки имеют одинаковые гены, но выглядят и ведут себя по-разному из-за эпигенетических изменений. Другими словами, это дополнительный слой информации, контролирующий регуляцию генов (Гамильтон и др., 2011).
Epigenetic modifications can inhibit or activate gene expression. A combination of these modifications plays an important role in “imprinting,” a type of “mark” that determines whether a gene will be expressed or not.
ДНК образуется из комбинаций нуклеотиды. Это известные буквы, о которых знает большинство людей: аденин (A), тиамин (T), гуанин (G) и цитозин (C).
Цитозин, например, может быть изменен путем добавления метильной группы (CH3).
Этот процесс называется метилированием и приводит к изменению экспрессии гена, последовательность которого была изменена. Метилирование ДНК, как правило, приводит к сайленсингу гена. При неудачном стечении обстоятельств это может быть очень плохо, если ген регулирует иммунную или какую-либо другую важную функцию.
Эпигенетические изменения могут происходить еще до рождения, в процессе развития и на протяжении всей жизни. Некоторые эпигенетические изменения являются нормальными и необходимы для роста и функционирования организма.
Другие эпигенетические изменения происходят под влиянием вашего поведения и окружающей среды.
Например, то, что вы едите, может влиять на метилирование генов или модификацию гистонов.
Ваша физическая активность может влиять на количество вырабатываемой некодирующей РНК или на ее взаимодействие с кодирующей РНК.
Эти эпигенетические изменения являются частью эволюции и имеют свое предназначение, но в некоторых случаях могут оказывать положительное или отрицательное влияние на здоровье.
Некоторые эпигенетические изменения, например, могут улучшать состояние иммунной системы, активируя гены, борющиеся с воспалением или раком.
Другие эпигенетические изменения могут повышать риск заболеваний за счет выключения генов, регулирующих обмен веществ или работу иммунной системы (см.Fanucchi et al, 2021); (Сурас и др., 2019).
Это движущая сила адаптации и эволюции. Если вам нужно доказательство эволюции и того, как она работает в реальном времени и как развиваются организмы, то это именно оно. Именно поэтому эпигенетические изменения также могут передаваться по наследству из поколения в поколение. Например, если ваши бабушки и дедушки подвергались воздействию токсинов, мутагенов или стрессовых факторов и если это воздействие привело к эпигенетическим изменениям в их ДНК, сперматозоидах или яйцеклетках, то эти изменения могут затем передаться вам и повлиять на экспрессию ваших генов (см. рис. 1).Денхардт и др., 2018).
Загрязненная окружающая среда и повсеместно присутствующие токсины будут влиять не только на вашу ДНК, но и на ДНК ваших детей (см.de Magalhães-Barbosa et al., 2022).
Эпигенетические изменения и их влияние на здоровье.
Приведенная ниже таблица иллюстрирует основные факторы, влияющие на экспрессию генов и эпигенетические изменения. Факторов больше, но из этой таблицы можно сделать вывод, что в каждой строке факторами, влияющими на риск, являются питание, стресс и воздействие токсинов.
Эпигенетические изменения | Влияние на здоровье | Источники |
Метилирование ДНК | A process that adds methyl groups to DNA bases, affecting gene expression. Environmental variables such as food, stress, and токсичность воздействие все они могут изменять метилирование ДНК. Метилирование ДНК может влиять на различные аспекты здоровья, такие как риск развития рака, иммунная функция и старение. | Кавалли и др., 2019 |
Модификации гистонов | Процесс, изменяющий структуру гистонов - белков, обволакивающих ДНК. Модификации гистонов могут влиять на то, насколько плотно или неплотно упакована ДНК, что сказывается на экспрессии генов. На модификации гистонов могут влиять такие факторы окружающей среды, как питание, стресс, воздействие токсинов. Модификации гистонов могут влиять на различные аспекты здоровья, такие как риск развития рака, иммунная функция и старение. | Кавалли и др., 2019 |
Некодирующие РНК | РНК, не кодирующая белки. Такие факторы окружающей среды, как питание, стресс и воздействие токсинов, могут влиять на некодирующую РНК. Некодирующая РНК может оказывать влияние на многие сферы здоровья, включая риск развития рака, иммунологические функции и старение. | Кавалли и др., 2019 |
Инфекции | Микроорганизмы могут изменять эпигенетику, ослабляя иммунную систему. Это помогает микробу выжить. Пример: Микобактерия туберкулеза вызывает туберкулез. Туберкулез был и остается смертельным заболеванием, поскольку он может изменять метилирование ДНК иммунных клеток, что делает иммунную систему менее эффективной в борьбе с инфекцией. | Что такое эпигенетика? | CDC, 2022b |
Примеры эпигенетических изменений и их влияние на риск развития рака.
Рак - сложное заболевание, включающее тысячи различных мутаций, которые накапливаются и связаны с изменениями как в геноме, так и в эпигеноме (Brena et al., 2007), (Шен и др., 2013). У вас может быть генетическая предрасположенность, которая досталась вам от родителей, но это лишь одна часть общей картины.
Эта генетическая предрасположенность к раку фактически включается в зависимости от экспрессии генов, а экспрессия генов в основном зависит от рациона питания (Халлар и др., 2014), и окружающей среды (Абдул и др., 2017).
Эпигенетические изменения могут включать или выключать гены, участвующие в росте клеток, их гибели или иммунном ответе. Эти изменения могут повлиять на общий риск развития рака или на реакцию на лечение рака. Именно поэтому мы имеем эпидемию рака, когда каждый четвертый человек в западных обществах со стандартной американской диетой, умрут от этого заболевания. Причиной являются не плохие гены, а экспрессия генов.
Приведем некоторые примеры эпигенетических изменений и их влияния на риск развития рака:
- Метилирование ДНК блокирует доступ к гену белкам, которые считывают его, по сути, выключая ген. Метилирование ДНК может выключать гены, подавляющие опухоли или восстанавливающие повреждения ДНК, тем самым деактивируя иммунную систему. Например, мутация в гене BRCA1, не позволяющая ему работать должным образом, повышает вероятность заболевания раком молочной железы и некоторыми другими видами рака. Однако если этот ген еще и метилирован, то, скорее всего, вы умрете, поскольку ваша иммунная система будет отключена. Метилирование может еще больше повысить риск развития рака и сделать его более агрессивным (Catteau et al., 2002), (Прайзенданк и др., 2020).
- Модификация гистонов - это добавление или удаление химических групп из гистонов, которые представляют собой белки, обволакивающие ДНК и образующие структуру, называемую хроматином. В зависимости от типа и расположения химических групп модификация гистонов может сделать хроматин более плотно или более рыхло упакованным, влияя на то, насколько ДНК открыта или скрыта от белков, которые ее считывают. Модификация гистонов может влиять на гены, регулирующие клеточный цикл, апоптоз или ангиогенез. Например, мутация в гене p53, препятствующая его нормальной работе, повышает вероятность возникновения различных видов рака. Однако если этот ген еще и модифицирован гистонами, то это может еще больше повысить риск развития рака или сделать его более устойчивым к лечению (см.Юэ и др., 2017).
- Некодирующая РНК: Это происходит, когда молекулы некодирующей РНК присоединяются к кодирующей РНК, которая используется для создания белков. Некодирующая РНК может способствовать разрушению кодирующей РНК или привлекать молекулы, которые модифицируют гистоны, влияя на экспрессию генов. Некодирующая РНК может влиять на гены, контролирующие дифференцировку клеток, инвазию или метастазирование. Например, мутация в гене KRAS, препятствующая его нормальной работе, повышает риск заболевания колоректальным раком. Однако если этот ген также регулируется некодирующей РНК, то это может еще больше повысить риск развития рака или затруднить его лечение (см.Салиани и др., 2022).
Эпигенетические изменения и их влияние в зависимости от диеты и питания
Диетические компоненты | Эпигенетические изменения | Источники |
Антиоксиданты | Антиоксиданты - это молекулы, способные нейтрализовать свободные радикалы, которые могут повреждать ДНК и гистоны. Антиоксиданты могут модулировать эпигенетические изменения, влияя на метилирование ДНК и модификации гистонов. | Beetch et al., 2020 |
Фолиевая кислота | Фолат - витамин группы В, участвующий в синтезе ДНК и РНК. Фолат может влиять на эпигенетические изменения, обеспечивая метильные группы для метилирования ДНК. Дефицит фолата может нарушать метилирование ДНК и повышать риск развития различных заболеваний, таких как рак, дефекты нервной трубки и когнитивные нарушения. | Крайдер и др., 2012 |
Ограничение калорийности | Ограничение калорийности рациона - это диетическое вмешательство, которое позволяет снизить потребление калорий, не вызывая при этом недоедания, за счет снижения уровня различных факторов, таких как воспаление, окислительный стресс и базальная скорость метаболизма. Ограничение калорийности может влиять на эпигенетические изменения, изменяя экспрессию и активность ферментов, участвующих в метилировании ДНК и модификации гистонов. | Генсус и др., 2019 |
Волокно | Клетчатка - это тип углеводов, который не усваивается ферментами человека, но может ферментироваться бактериями кишечника. Клетчатка может влиять на эпигенетические изменения, воздействуя на состав и функционирование микробиоты кишечника, которая может вырабатывать метаболиты, модулирующие метилирование ДНК и модификации гистонов. | Choi et al., 2010 |
Пробиотики | Пробиотики могут влиять на эпигенетические изменения путем воздействия на состав и функционирование микробиоты кишечника, которая может продуцировать метаболиты, модулирующие метилирование ДНК и модификации гистонов. Пробиотики также могут модулировать экспрессию генов, участвующих в воспалении, иммунитете и метаболизме. | (Борзабади и др., 2018), (Ye et al., 2017) |
Пребиотики | Пребиотики - это неперевариваемые углеводы, которые избирательно стимулируют рост и/или активность полезных бактерий кишечника. Пребиотики могут влиять на эпигенетические изменения, воздействуя на состав и функционирование микробиоты кишечника, которая может продуцировать метаболиты, модулирующие метилирование ДНК и модификации гистонов. Пребиотики также могут модулировать экспрессию генов, участвующих в воспалении, иммунитете и метаболизме. | Ye et al., 2017 |
Antioxidants’ effect on gene expression.
Приведем несколько примеров - это не полный список всех эффектов, а лишь пример:
- Антиоксиданты могут предотвратить или обратить вспять процесс метилирования ДНК. Метилирование ДНК может происходить под воздействием свободных радикалов или токсинов. Антиоксиданты могут блокировать этот процесс или удалять метильную группу, восстанавливая функцию гена.
- Антиоксиданты могут модулировать модификации гистонов. Антиоксиданты могут влиять на ферменты, которые производят эти модификации, изменяя структуру хроматина.
- Антиоксиданты могут регулировать некодирующую РНК. Антиоксиданты могут влиять на производство или активность некодирующей РНК, изменяя регуляцию генов.
- Антиоксиданты способны предотвращать или восстанавливать повреждения ДНК и восстанавливать нормальную экспрессию генов, предотвращая или замедляя развитие рака.
В таблице ниже приведены некоторые антиоксиданты и их влияние на экспрессию генов. Это не полный список, а лишь некоторые примеры, которые были исследованы учеными. В таблице приведены тысячи различных фитохимических веществ и вы должны или не должны быть в состоянии исследовать их все. Необходимо стремиться к увеличению общая ценность рациона по шкале ORAC за счет питания и не идти по пути индивидуальных дополнительных антиоксидантов. Фитохимические вещества действуют синергетически как комплекс химических веществ из цельных пищевых источников, где 2 плюс 2 равно 15. В таблице я привел некоторые антиоксиданты в качестве примера.
Антиоксидант | Влияние на эпигенетику | Источник |
Куркумин | Куркумин - это противовоспалительный, антиоксидантный и противораковый полифенол, получаемый из куркумы. Куркумин может ингибировать ДНК-метилтрансферазы (DNMT) и гистоновые деацетилазы (HDAC), вызывая реактивацию генов-супрессоров опухолей и подавление онкогенов. Куркумин также может изменять структуру хроматина и экспрессию генов, индуцируя ацетилирование и метилирование гистонов. Куркумин может модулировать микроРНК (miRNAs) и длинные некодирующие РНК (lncRNAs), которые являются мишенями для генов, участвующих в воспалении, апоптозе, клеточном цикле, инвазии и метастазировании. | Bhattacharjee et al., 2020 |
Ресвератрол | Ресвератрол - природный полифенол, содержащийся в винограде, красном вине, ягодах и арахисе и обладающий антиоксидантным, противовоспалительным и противораковым действием. Ресвератрол способен ингибировать DNMT и HDAC, что приводит к деметилированию и реактивации генов-супрессоров опухолей и снижению регуляции онкогенов. Ресвератрол также может индуцировать ацетилирование и метилирование гистонов, влияя на структуру хроматина и экспрессию генов. Ресвератрол может регулировать миРНК и lncRNA, которые направлены на гены, участвующие в окислительном стрессе, воспалении, апоптозе, аутофагии, сенисценции, ангиогенезе и метастазировании. | Гриньян-Ферре и др., 2020 |
Апигенин | Апигенин - природный флавоноид, получаемый из цветков ромашки, апельсинов, петрушки, сельдерея и других природных источников, обладающий антиоксидантными, противовоспалительными и противораковыми свойствами. Апигенин способен ингибировать DNMT и HDAC, что приводит к деметилированию и реактивации генов-супрессоров опухолей и снижению регуляции онкогенов. Апигенин также может индуцировать ацетилирование и метилирование гистонов, изменяя структуру хроматина и экспрессию генов. Апигенин может регулировать миРНК, которые направлены на гены, участвующие в клеточном цикле, апоптозе, инвазии, метастазировании, ангиогенезе и стволовых процессах. | Bhattacharjee et al., 2020 |
Сульфорафан | Сульфорафан - это природный изотиоцианат, получаемый из крестоцветных овощей, таких как брокколи, Капуста и кейл обладают антиоксидантными, противовоспалительными и противораковыми свойствами. Сульфорафан может ингибировать DNMT и HDAC, что приводит к деметилированию и реактивации генов-супрессоров опухолей и снижению регуляции онкогенов. Сульфорафан также может индуцировать ацетилирование и метилирование гистонов, изменяя структуру хроматина и экспрессию генов. Сульфорафан может регулировать миРНК и lncRNA, которые направлены на гены, участвующие в воспалении, апоптозе, клеточном цикле, инвазии и метастазировании. | Bhattacharjee et al., 2020 |
Урсоловая кислота | Урсоловая кислота - природный пентациклический тритерпеноид, содержащийся в различных фруктах, травах и специях и обладающий антиоксидантным, противовоспалительным и противораковым действием. Урсоловая кислота способна ингибировать DNMT и HDAC, что приводит к деметилированию и реактивации генов-супрессоров опухолей и снижению регуляции онкогенов. Урсоловая кислота также может индуцировать ацетилирование и метилирование гистонов, влияя на структуру хроматина и экспрессию генов. Урсоловая кислота может регулировать миРНК, которые направлены на гены, участвующие в клеточном цикле, апоптозе, инвазии, метастазировании, ангиогенезе и стволовых процессах. | Bhattacharjee et al., 2020 |
Аллицин | Аллицин - природное соединение серы, получаемое из чеснок, обладающий противомикробным, антиоксидантным, противовоспалительным и противораковым действием. Аллицин может подавлять активность ДНК-гиразы у бактерий, что приводит к торможению репликации и транскрипции ДНК. Аллицин также может окислять остатки цистеина в белках, влияя на их структуру и функции. Аллицин может регулировать миРНК, которые нацелены на гены, участвующие в клеточном цикле, апоптозе, инвазии, метастазировании, ангиогенезе и стволовых процессах. | Чхабрия и др., 2015 |
Существует еще множество антиоксидантов, способных влиять на экспрессию генов. Если вы хотите узнать больше, то можете поискать соответствующие статьи.
Возможно, вы также задаетесь вопросом, откуда можно получить антиоксиданты. Хорошая новость заключается в том, что они содержатся в основном в растениях, и есть растения, которые очень богаты антиоксидантами. Узнайте свои показатели ORAC.
Влияние фолатов на экспрессию генов.
Фолат - это витамин группы В, участвующий в синтезе ДНК и РНК. Фолат необходим клеткам для правильного роста и деления. Фолат можно получить из таких продуктов, как листовая зелень, бобы, орехи, яйца и обогащенные злаки. Проблема в том, что это один из самых распространенных недостатки в стандартной американской диете. Люди, употребляющие цельнозерновую растительную пищу, обычно не испытывают дефицита фолатов и не нуждаются в дополнительном приеме фолиевой кислоты.
Приведем несколько примеров:
- Фолат обеспечивает метильные группы (одна углеродная группа) для метилирования ДНК (Крайдер и др., 2012). Фолат является одним из основных источников метильных групп для этого процесса. Дефицит фолатов может нарушать метилирование ДНК и вызывать аномальную экспрессию генов.
- Фолат влияет на закрытие нервной трубки. Нейронная трубка - это структура, формирующая головной и спинной мозг у эмбриона. Для нормального развития нервной трубки необходимо, чтобы она правильно закрывалась. Фолат необходим для этого процесса, поскольку он влияет на экспрессию генов, участвующих в закрытии нервной трубки (Saitsu et al., 2017). Дефицит фолатов может препятствовать закрытию нервной трубки и вызывать такие врожденные дефекты, как spina bifida.
- Фолат важен для когнитивных функций, поскольку влияет на экспрессию генов, участвующих в развитии и функционировании мозга. Дефицит фолатов может ухудшать когнитивные функции и повышать риск развития деменции.
Вот некоторые из эффектов фолатов на эпигенетику и почему они важны для вашего здоровья и развития. Возможно, вы задаетесь вопросом, сколько фолатов вам необходимо и откуда их можно получить. Вот несколько советов:
- RDA для фолатов составляет 400 мкг для взрослых и 600 мкг для беременных женщин.
- Фолаты можно получить из таких продуктов питания, как листовая зелень, бобы, орехи, яйца и обогащенные зерновые. При дефиците или повышенной потребности в фолатах можно принимать добавки.
- Не следует принимать слишком много фолатов, так как они могут маскировать витамин Дефицит витамина В12 или взаимодействовать с некоторыми лекарственными препаратами.
- Кроме того, фолиевая кислота - это не то же самое, что фолат. Нам необходимы фолаты, но добавки состоят из фолиевой кислоты. Наша печень, в отличие от печени крыс в животной модели, не способна за один день превратить в фолат более 400 мг фолиевой кислоты. Именно поэтому большинство добавок не превышают 400 мг фолиевой кислоты.
Влияние ограничения калорийности на экспрессию генов.
Ограничение калорийности питания - это снижение потребления калорий, не приводящее к недоеданию. Ограничение калорийности может влиять на количество вырабатываемой некодирующей РНК или на ее взаимодействие с кодирующей РНК (Абрахам и др., 2017). Ограничение калорийности также может регулировать циркадный ритм экспрессии генов в различных органах и тканях (Патель и др., 2016).
Такое влияние ограничения калорийности на эпигенетику может иметь различные преимущества для здоровья и старения. Например:
- Ограничение калорийности пищи может замедлить старение путем модуляции различных путей, таких как воспаление (Gabandé-Rodríguez et al., 2019), окислительного стресса, метаболизма и аутофагии (Багерния и др., 2018).
- Ограничение калорийности рациона также может увеличить продолжительность жизни за счет повышения экспрессии генов, защищающих от повреждения и гибели клеток (Komatsu T et al., 2019).
В ходе нашей нормальной эволюции мы были вынуждены ограничивать калорийность пищи в нормальная среда обитания для всех наших предков-гомининов, обусловленная дефицитом. Our body’s response to restriction is to repair itself by destroying bad or mutated or precancerous cells first for energy and by slowing down metabolism. When you slow down your metabolism you burn less energy, have lower oxidative stress and you live longer. And calorie restriction also has effects on gene expression. Our body is used to havening it and expects it as a normal part of life. Lacking autophagy directly leads to cancer risk. A цельнопищевая растительная диета, естественно, более склонна к ограничению калорийности обеспечивая меньшее количество калорий по сравнению со стандартной американской диетой (SAD) и при этом удовлетворяя потребности в питательных веществах (Грегер, 2020). С другой стороны, SAD вызывает избыток калорий за счет употребления масла и сахара, а также высокоаппетитной пищи, что может нарушать экспрессию генов и повышать риск заболеваний.
Влияние клетчатки на экспрессию генов.
Клетчатка - это тип углеводов, который не усваивается непосредственно нашими ферментами, а попадает в толстую кишку, где ферментируется бактериями кишечника. Клетчатка помогает регулировать пищеварение, снижать уровень холестерина и предотвращать запоры.
Бактерии, ферментирующие клетчатку, являются симбиотическими и полезными для нашей иммунной системы и организма, в отличие от непробиотических бактерий, гниющих в мясе. Эта бактерия, питающаяся мясом, в течение нескольких часов разлагает съеденную вами пищу в толстом кишечнике, вызывая воспаление. Мясо есть мясо, и ваше тоже вкусное.
Клетчатку можно получить из таких продуктов, как фрукты, овощи, зерновые, бобы и орехи.
Приведем несколько примеров:
- Клетчатка может влиять на состав и функции микробиоты кишечника, обеспечивая пробиотические бактерии пищей и стимулируя их рост и активность в отношении мясоедных непробиотических бактерий (Макки и др., 2018).
- Волокно влияет на метаболиты, вырабатываемые микробиотой кишечника. Метаболиты - это вещества, которые вырабатываются или потребляются микробиотой кишечника. Они могут попадать в кровь и воздействовать на органы и ткани. Клетчатка может влиять на тип и количество метаболитов, вырабатываемых микробиотой кишечника, стимулируя пробиотические бактерии и снижая метаболические процессы непробиотических мясоедных бактерий в толстой кишке (см.Макки и др., 2018).
- Эти метаболиты могут влиять на эпигенетическую регуляцию, изменяя доступность или активность химических доноров или ферментов, контролирующих метилирование ДНК и модификацию гистонов. Эти эпигенетические изменения могут привести к изменению экспрессии генов, участвующих в воспалении, иммунитете и метаболизме.
- Клетчатка может защищать от ожирения и диабета, модулируя экспрессию генов, участвующих в гомеостазе глюкозы, липидном обмене и расходовании энергии.
- Клетчатка может улучшать иммунную функцию. Хроническое воспаление может быть следствием дисбаланса микробиоты кишечника или нарушения барьерной функции кишечника. Fiber can improve immune function and prevent infections by modulating the expression of genes involved in inflammation, immunity, and barrier function and by downregulating the activity and number of non-probiotic bacteria in the microbiota colony. Fiber can also stimulate the production of antibodies and cytokines that help fight off germs.
Рекомендуемое пищевое потребление (RDI) клетчатки составляет 25 г в день для женщин и 38 г в день для мужчин. Это только RDA для SAD. В антропологическом смысле наши предки-гоминины потребляли гораздо больше. В отношении клетчатки действует одно правило: больше - значит лучше. Проблема в том, что мы не хотим вздутия живота, газов и постоянного учащенного опорожнения кишечника. Нам также не нравится неприятная текстура клетчатки без вкуса, поэтому мы предпочитаем ее не есть.
В представленном ниже видеоролике Одед Рехави, доктор философии, профессор нейробиологии Тель-Авивского университета, специалист по вопросам наследования генов, формирования генов в результате переживаний и, что примечательно, передачи некоторых воспоминаний о переживаниях через гены потомству. Он рассказывает о своих исследованиях, опровергающих давно известные постулаты о генетическом наследовании, и об их значимости для понимания ключевых биологических и психологических процессов, включая метаболизм, стресс и травмы. Он описывает историю научного исследования "наследственности приобретенных признаков" и то, как эпигенетика и РНК-биология могут объяснить прохождение некоторых видов памяти, основанных на опыте.
Заключение:
Это обширная тема, которая находится на переднем крае научных исследований последних двух десятилетий. В этой статье я попытался дать краткое изложение, прежде чем мы перейдем к рассмотрению некоторых конкретных сценариев в статьях, связанных с ними.
Это лишь некоторые примеры эпигенетических изменений и их влияния на риск развития рака. Эпигенетические изменения могут вызывать и другие факторы, например, курение, физические нагрузки, стресс, наркотики, загрязнение окружающей среды или травмы.
Суть в том, что ваши гены не фиксированы. Вы можете изменить их своим выбором, и для этого необходимо выбирать диету, богатую антиоксидантами и клетчаткой, избегая биоаккумуляции мутагенов и токсинов в пищевой цепи. Необходимо избегать чрезмерно калорийных и плотных диет, лишенных питательных веществ, и сочетать ограничение калорийности с прерывистым голоданием, а также избегать перенапряжения эндокринной системы избыточным потреблением белка. Существует высокий уровень correlation between overall cancer risk and chronically elevated IGF-1 levels (за счет высококачественного белкового питания с преобладанием SAD).
Поэтому делайте разумный выбор, который защитит экспрессию ваших генов и снизит риск развития рака. Мой совет - не ждать еще пятьдесят лет, пока рекомендации изменятся, как это было с курением. В ваших силах изменить не только свои гены, но и гены своих детей.
- Классическая генетика не могла объяснить всего, что привело к созданию молекулярной биологии.
- Эпигенетика бросила вызов предположениям и догмам генетики и молекулярной биологии.
- Эпигенетика раскрывает механизмы, регулирующие экспрессию генов без изменения последовательности ДНК.
- Важны не гены, а то, как они себя выражают.
- Химические модификации ДНК или гистонов могут влиять на доступ к генам и их использование.
- Модификации могут быть добавлены или удалены ферментами в зависимости от различных факторов.
- Изменения могут передаваться дочерним клеткам или даже детям в процессе репродукции.
- Эпигенетика может влиять на признаки, не кодируемые ДНК самостоятельно, такие как поведение, предрасположенность к заболеваниям и старение.
- Под экспрессией генов понимается частота или время создания белков на основе инструкций, заложенных в генах.
- Транскрипция может включаться или выключаться в зависимости от различных факторов, что позволяет организму адаптироваться к различным ситуациям.
- Рак включает в себя тысячи мутаций в геноме и эпигеноме.
- Генетическая предрасположенность - это лишь один из аспектов рака.
- Экспрессия генов под влиянием диеты и окружающей среды может включать генетическую предрасположенность к раку.
- Эпигенетические изменения могут влиять на риск развития рака и реакцию на лечение.
- Высокая заболеваемость раком в западных обществах со стандартной американской диетой обусловлена экспрессией генов, а не плохими генами.
- Метилирование ДНК блокирует доступ к генам, выключая их и деактивируя иммунную систему.
- Метилирование может повышать риск развития рака и делать его более агрессивным.
- Модификация гистонов может влиять на гены, регулирующие клеточный цикл, апоптоз или ангиогенез.
- Мутации в различных генах повышают риск развития рака, но дополнительная регуляция через метилирование, модификацию гистонов или некодирующую РНК может еще больше увеличить риск или затруднить лечение рака.
- Антиоксиданты могут предотвратить или обратить вспять метилирование ДНК, вызванное свободными радикалами или токсинами.
- Антиоксиданты могут модулировать модификации гистонов, воздействуя на ферменты и изменяя структуру хроматина.
- Антиоксиданты могут регулировать некодирующую РНК, изменяя регуляцию генов.
- Антиоксиданты способны предотвращать или восстанавливать повреждения ДНК и восстанавливать нормальную экспрессию генов, замедляя развитие рака.
- Фолат обеспечивает метильные группы для метилирования ДНК.
- Дефицит фолатов может нарушать метилирование ДНК и вызывать аномальную экспрессию генов.
- Дефицит фолатов может ухудшать когнитивные функции и повышать риск развития деменции.
- Фолиевая кислота - это не то же самое, что фолат.
- Ограничение калорийности рациона замедляет старение и модулирует воспаление, окислительный стресс, метаболизм и пути аутофагии.
- Ограничение калорийности пищи повышает экспрессию генов, защищающих от повреждения и гибели клеток.
- Ограничение калорий было нормальной частью нашей эволюции в связи с дефицитом.
- Наш организм реагирует на ограничение питания самовосстановлением и замедлением обмена веществ.
- Диета на основе цельных растительных продуктов естественным образом приводит к ограничению калорийности рациона и при этом удовлетворяет потребности в питательных веществах.
- Стандартная американская диета (SAD) приводит к избытку калорий и повышению риска заболеваний из-за содержания масла, сахара и продукты с высокими вкусовыми качествами.
- Клетчатка влияет на микробиоту кишечника, стимулируя пробиотические бактерии и снижая численность непробиотических бактерий, питающихся мясом.
- Метаболиты, продуцируемые микробиотой кишечника, могут оказывать влияние на органы и ткани, а клетчатка может влиять на тип и количество этих метаболитов.
- Волокно может модулировать эпигенетическую регуляцию и изменять экспрессию генов, участвующих в воспалении, иммунитете и метаболизме.
- Клетчатка может защищать от ожирения и диабета, модулируя экспрессию генов, участвующих в гомеостазе глюкозы, липидном обмене и расходе энергии.
- Клетчатка может улучшать иммунную функцию за счет модуляции экспрессии генов, участвующих в воспалении, иммунитете и барьерной функции, а также за счет снижения количества непробиотических бактерий.
- Клетчатка может стимулировать выработку антител и цитокинов для борьбы с микробами.
- Больше клетчатки обычно лучше.
- Слишком большое количество клетчатки может вызвать вздутие живота, газообразование и учащенное опорожнение кишечника.
- Существует множество факторов, способных вызвать эпигенетические изменения, например курение, физические нагрузки, стресс, наркотики, загрязнение окружающей среды или травмы.
- Ваши гены не фиксированы и могут изменяться под влиянием вашего выбора.
- Рекомендуется диета, богатая антиоксидантами и клетчаткой, при этом следует избегать биоаккумуляция мутагенов и токсинов в пищевой цепи.
- Следует избегать чрезмерно калорийных диет и диет с недостатком питательных веществ, и рекомендуется ограничение калорийности пищи с использованием прерывистого голодания.
- Чрезмерное потребление белка может привести к сверхэкспрессии IGF1 и повышению риска развития рака.
Часто Задаваемые Вопросы
Ссылки:
- Peixoto, P., Cartron, P. F., Serandour, A. A., & Hervouet, E. (2020). From 1957 to Nowadays: A Brief History of Epigenetics. Международный журнал молекулярных наук, 21(20), 7571. https://doi.org/10.3390/ijms21207571
- What is Epigenetics? | CDC. (2022, August 15). Centers for Disease Control and Prevention. https://www.cdc.gov/genomics/disease/epigenetics.htm
- LaPelusa, A., & Kaushik, R. (2022). Physiology, Proteins. In StatPearls. StatPearls Publishing. [Опубликованный]
- Blackwell, T. K., & Walker, A. K. (2006). Transcription mechanisms. WormBook : the online review of C. elegans biology, 1–16. https://doi.org/10.1895/wormbook.1.121.1
- Hamilton J. P. (2011). Epigenetics: principles and practice. Digestive diseases (Basel, Switzerland), 29(2), 130–135. https://doi.org/10.1159/000323874
- Fanucchi, S., Domínguez-Andrés, J., Joosten, L. A. B., Netea, M. G., & Mhlanga, M. M. (2021). The Intersection of Epigenetics and Metabolism in Trained Immunity. Immunity, 54(1), 32–43. https://doi.org/10.1016/j.immuni.2020.10.011
- Surace, A. E. A., & Hedrich, C. M. (2019). The Role of Epigenetics in Autoimmune/Inflammatory Disease. Frontiers in immunology, 10, 1525. https://doi.org/10.3389/fimmu.2019.01525
- Denhardt, D. T. (2018). Effect of stress on human biology: Epigenetics, adaptation, inheritance, and social significance. Journal of Cellular Physiology, 233(3), 1975–1984. https://doi.org/10.1002/jcp.25837
- de Magalhães-Barbosa, M. C., Prata-Barbosa, A., & da Cunha, A. J. L. A. (2022). Toxic stress, epigenetics and child development. Jornal de pediatria, 98 Suppl 1(Suppl 1), S13–S18. https://doi.org/10.1016/j.jped.2021.09.007
- Cavalli, G., & Heard, E. (2019). Advances in epigenetics link genetics to the environment and disease. Природа, 571(7766), 489–499. https://doi.org/10.1038/s41586-019-1411-0
- Brena, R. M., & Costello, J. F. (2007). Genome-epigenome interactions in cancer. Human molecular genetics, 16 Spec No 1, R96–R105. https://doi.org/10.1093/hmg/ddm073
- Shen, H., & Laird, P. W. (2013). Interplay between the cancer genome and epigenome. Ячейка, 153(1), 38–55. https://doi.org/10.1016/j.cell.2013.03.008
- Hullar, M. A., & Fu, B. C. (2014). Diet, the gut microbiome, and epigenetics. Cancer journal (Sudbury, Mass.), 20(3), 170–175. https://doi.org/10.1097/PPO.0000000000000053
- Abdul, Q. A., Yu, B. P., Chung, H. Y., Jung, H. A., & Choi, J. S. (2017). Epigenetic modifications of gene expression by lifestyle and environment. Archives of pharmacal research, 40(11), 1219–1237. https://doi.org/10.1007/s12272-017-0973-3
- Catteau, A., & Morris, J. S. (2002). BRCA1 methylation: a significant role in tumour development? Seminars in Cancer Biology, 12(5), 359–371. https://doi.org/10.1016/s1044-579x(02)00056-1
- Prajzendanc, K., Domagała, P., Hybiak, J., Ryś, J., Huzarski, T., Szwiec, M., Tomiczek-Szwiec, J., Redelbach, W., Sejda, A., Gronwald, J., Kluz, T., Wiśniowski, R., Cybulski, C., Łukomska, A., Białkowska, K., Sukiennicki, G., Kulczycka, K., Narod, S. A., Wojdacz, T. K., Lubiński, J., … Jakubowska, A. (2020). BRCA1 promoter methylation in peripheral blood is associated with the risk of triple-negative breast cancer. Международный журнал по онкологии, 146(5), 1293–1298. https://doi.org/10.1002/ijc.32655
- Yue, X., Zhao, Y., Xu, Y., Zheng, M., Feng, Z., & Hu, W. (2017). Mutant p53 in Cancer: Accumulation, Gain-of-Function, and Therapy. Journal of molecular biology, 429(11), 1595–1606. https://doi.org/10.1016/j.jmb.2017.03.030
- Saliani, M., Jalal, R., & Javadmanesh, A. (2022). Differential expression analysis of genes and long non-coding RNAs associated with KRAS mutation in colorectal cancer cells. Scientific reports, 12(1), 7965. https://doi.org/10.1038/s41598-022-11697-5
- Beetch, M., Harandi-Zadeh, S., Shen, K., Lubecka, K., Kitts, D. D., O’Hagan, H. M., & Stefanska, B. (2020). Dietary antioxidants remodel DNA methylation patterns in chronic disease. Британский журнал фармакологии, 177(6), 1382–1408. https://doi.org/10.1111/bph.14888
- Crider, K. S., Yang, T. P., Berry, R. J., & Bailey, L. B. (2012). Folate and DNA methylation: a review of molecular mechanisms and the evidence for folate’s role. Достижения в области питания (Бетесда, Мэриленд), 3(1), 21–38. https://doi.org/10.3945/an.111.000992
- Gensous, N., Franceschi, C., Santoro, A., Milazzo, M., Garagnani, P., & Bacalini, M. G. (2019). The Impact of Caloric Restriction on the Epigenetic Signatures of Aging. Международный журнал молекулярных наук, 20(8), 2022. https://doi.org/10.3390/ijms20082022
- Choi, S. W., & Friso, S. (2010). Epigenetics: A New Bridge between Nutrition and Health. Достижения в области питания (Бетесда, Мэриленд), 1(1), 8–16. https://doi.org/10.3945/an.110.1004
- Borzabadi, S., Oryan, S., Eidi, A., Aghadavod, E., Daneshvar Kakhaki, R., Tamtaji, O. R., Taghizadeh, M., & Asemi, Z. (2018). The Effects of Probiotic Supplementation on Gene Expression Related to Inflammation, Insulin and Lipid in Patients with Parkinson’s Disease: A Randomized, Double-blind, PlaceboControlled Trial. Archives of Iranian medicine, 21(7), 289–295. [Опубликованный]
- Ye, J., Wu, W., Li, Y., & Li, L. (2017). Influences of the Gut Microbiota on DNA Methylation and Histone Modification. Болезни органов пищеварения и науки, 62(5), 1155–1164. https://doi.org/10.1007/s10620-017-4538-6
- Bhattacharjee, S., & Dashwood, R. H. (2020). Epigenetic Regulation of NRF2/KEAP1 by Phytochemicals. Антиоксиданты (Базель, Швейцария), 9(9), 865. https://doi.org/10.3390/antiox9090865
- Griñán-Ferré, Christian, et al. “Dietary Antioxidants, Epigenetics, and Brain Aging: A Focus on Resveratrol.” Oxidative Stress and Dietary Antioxidants in Neurological Diseases, edited by Colin R. Martin and Victor R. Preedy, Academic Press, 2020, pp. 343-57 https://doi.org/10.1016/B978-0-12-817780-8.00022-0
- Chhabria, S. V., Akbarsha, M. A., Li, A. P., Kharkar, P. S., & Desai, K. B. (2015). In situ allicin generation using targeted alliinase delivery for inhibition of MIA PaCa-2 cells via epigenetic changes, oxidative stress and cyclin-dependent kinase inhibitor (CDKI) expression. Apoptosis : an international journal on programmed cell death, 20(10), 1388–1409. https://doi.org/10.1007/s10495-015-1159-4
- Crider, K. S., Yang, T. P., Berry, R. J., & Bailey, L. B. (2012). Folate and DNA methylation: a review of molecular mechanisms and the evidence for folate’s role. Достижения в области питания (Бетесда, Мэриленд), 3(1), 21–38. https://doi.org/10.3945/an.111.000992
- Saitsu, H. (2017). Folate receptors and neural tube closure. Congenital Anomalies, 57(5), 130–133. https://doi.org/10.1111/cga.12218
- Abraham, K. J., Ostrowski, L. A., & Mekhail, K. (2017). Non-Coding RNA Molecules Connect Calorie Restriction and Lifespan. Journal of molecular biology, 429(21), 3196–3214. https://doi.org/10.1016/j.jmb.2016.08.020
- Patel, S. A., Velingkaar, N., Makwana, K., Chaudhari, A., & Kondratov, R. (2016). Calorie restriction regulates circadian clock gene expression through BMAL1 dependent and independent mechanisms. Scientific reports, 6, 25970. https://doi.org/10.1038/srep25970
- Gabandé-Rodríguez, E., Gómez de Las Heras, M. M., & Mittelbrunn, M. (2019). Control of Inflammation by Calorie Restriction Mimetics: On the Crossroad of Autophagy and Mitochondria. Cells, 9(1), 82. https://doi.org/10.3390/cells9010082
- Bagherniya, M., Butler, A. E., Barreto, G. E., & Sahebkar, A. (2018). The effect of fasting or calorie restriction on autophagy induction: A review of the literature. Обзоры исследований старения, 47, 183–197. https://doi.org/10.1016/j.arr.2018.08.004
- Komatsu, T., Park, S., Hayashi, H., Mori, R., Yamaza, H., & Shimokawa, I. (2019). Mechanisms of Calorie Restriction: A Review of Genes Required for the Life-Extending and Tumor-Inhibiting Effects of Calorie Restriction. Питательные вещества, 11(12), 3068. https://doi.org/10.3390/nu11123068
- Greger M. (2020). A Whole Food Plant-Based Diet Is Effective for Weight Loss: The Evidence. Американский журнал медицины образа жизни, 14(5), 500–510. https://doi.org/10.1177/1559827620912400
- Makki, K., Deehan, E. C., Walter, J., & Bäckhed, F. (2018). The Impact of Dietary Fiber on Gut Microbiota in Host Health and Disease. Cell host & microbe, 23(6), 705–715. https://doi.org/10.1016/j.chom.2018.05.012
Связанные Посты
У вас есть какие-либо вопросы о питании и здоровье?
Я хотел бы услышать ваше мнение и ответить на них в моем следующем посте. Я ценю ваш вклад и мнение и с нетерпением жду вашего скорого ответа. Я также приглашаю вас следовать за нами на Facebook, Instagram и Pinterest для получения дополнительной информации о диетах, питании и здоровье. Там можно оставить комментарий и пообщаться с другими приверженцами здорового образа жизни, поделиться своими советами и опытом, а также получить поддержку и ободрение от нашей команды и сообщества.
Я надеюсь, что эта статья была для вас познавательной и приятной и что вы готовы применить полученные знания. Если эта статья оказалась полезной, пожалуйста поделиться с друзьями и родственниками, которым это может быть полезно. Никогда не знаешь, кому может понадобиться совет и поддержка на пути к здоровью.
– Вам Также Может Понравиться –
Узнайте о Питании
Милош Покимица - доктор естественной медицины, клинический диетолог, автор статей о здоровье и питании и консультант по вопросам питания. Автор серии книг Стать веганом? Обзор науки, он также управляет веб - сайтом natural health GoVeganWay.com
Медицинский Отказ от Ответственности
GoVeganWay.com предлагает вам обзоры последних исследований, связанных с питанием и здоровьем. Предоставленная информация представляет собой личное мнение автора и не предназначена и не подразумевается в качестве замены профессиональной медицинской консультации, диагностики или лечения. Предоставленная информация предназначена исключительно для информационных целей и не предназначена для замены консультации, диагностики и/или лечения у квалифицированного врача или поставщика медицинских услуг.НИКОГДА НЕ ПРЕНЕБРЕГАЙТЕ ПРОФЕССИОНАЛЬНЫМИ МЕДИЦИНСКИМИ СОВЕТАМИ И НЕ ОТКЛАДЫВАЙТЕ ОБРАЩЕНИЕ ЗА МЕДИЦИНСКОЙ ПОМОЩЬЮ ИЗ-ЗА ТОГО, ЧТО ВЫ ЧТО-ТО ПРОЧИТАЛИ Или ПОЛУЧИЛИ ДОСТУП Через GoVeganWay.com
НИКОГДА НЕ МЕНЯЙТЕ ОБРАЗ ЖИЗНИ Или КАКИЕ-ЛИБО ИЗМЕНЕНИЯ ВООБЩЕ ВСЛЕДСТВИЕ ТОГО, ЧТО ВЫ ПРОЧИТАЛИ В GoVeganWay.com ДО КОНСУЛЬТАЦИИ С ЛИЦЕНЗИРОВАННЫМ ПРАКТИКУЮЩИМ ВРАЧОМ.
В случае неотложной медицинской помощи немедленно позвоните врачу или 911. GoVeganWay.com не рекомендует и не одобряет какие-либо конкретные группы, организации, тесты, врачей, продукты, процедуры, мнения или другую информацию, которая может быть упомянута внутри.
Выбор редактора –
Милош Покимица - доктор естественной медицины, клинический диетолог, автор статей о здоровье и питании и консультант по вопросам питания. Автор серии книг Стать веганом? Обзор науки, он также управляет веб - сайтом natural health GoVeganWay.com
Последние статьи -
Новости , Основанные на растениях
-
Are Air Fryers Safe To Use?
on Октябрь 13, 2024
-
30-Minute Vegan Malai Kofta
on Октябрь 13, 2024
-
Roasted Pepper Thyme And Butter Bean Tray Bake
on Октябрь 13, 2024
-
Gurudev Sri Sri Ravi Shankar: ‘Being Spiritual Makes You Quit Meat’
on Октябрь 12, 2024
-
These Pistachio Energy Balls Are A Great Post-Workout Snack
on Октябрь 12, 2024
-
Influencer Throws Up After Being Fed Raw Meat By Eddie Abew
on Октябрь 11, 2024
-
Vegan Risotto With Asparagus And Lemon
on Октябрь 11, 2024
Главные Новости Эдравоохранения — ScienceDaily
- Researchers identify signs tied to more severe cases of RSVon Октябрь 11, 2024
Clinician-scientists analyzed samples from patients’ airways and blood, finding distinct changes in children with severe cases of RSV, including an increase in the number of natural killer (NK) cells in their airways. The descriptive study, which focuses on understanding the underpinnings of severe disease, may help to lay groundwork for identifying new targets for future treatments.
- New paradigm of drug discovery with world’s first atomic editing?on Октябрь 11, 2024
Researchers have successfully develop single-atom editing technology that maximizes drug efficacy.
- How do we recognize other people’s emotions?on Октябрь 11, 2024
For recognizing people’s emotions, facial expressions do play an important role. However, they are not the only crucial factor.
- A new target for anxiety disorderson Октябрь 11, 2024
By generating mice with genetic mutations that disrupt the brain’s TrkC-PTP protein complex, researchers find a key way that brain cells communicate.
- Genomic study identifies human, animal hair in ‘man-eater’ lions’ teethon Октябрь 11, 2024
Scientists analyzed hairs extracted from the broken teeth of two 19th century ‘man-eater’ lions. Their analysis revealed DNA from giraffe, human, oryx, waterbuck, wildebeest and zebra as prey, along with hairs that originated from the lions.
- A potential non-invasive stool test and novel therapy for endometriosison Октябрь 11, 2024
Promising findings could lead to the development of a non-invasive stool test and a new therapy for endometriosis, a painful condition that affects nearly 200 million women worldwide.
- How innate immunity envelops bacteriaon Октябрь 11, 2024
Scientists discover how innate immunity envelops bacteria. The protein GBP1 is a vital component of our body’s natural defense against pathogens. This substance fights against bacteria and parasites by enveloping them in a protein coat, but how the substance manages to do this has remained unknown until now. Researchers have now unraveled how this protein operates.
Опубликованный, #веганская диета –
- Examining the effectiveness of promotional nudges increasing plant-based food choices in a post-secondary education dining hall: a pilot studyon Октябрь 10, 2024
CONCLUSIONS: The combination of nudges was effective at significantly increasing the selection of plant-based options over meat-based options in a post-secondary dining hall setting.
- Reduction in Lp(a) after a medically supervised, prolonged water-only fast followed by a whole-plant-food diet free of added salt, oil, and sugar: a case reporton Октябрь 9, 2024
Lipoprotein(a) [Lp(a)] is a low-density lipoprotein (LDL) associated with increased cardiovascular disease (CVD) risk. High Lp(a) levels are genetically determined and lack effective pharmacotherapy. This case report describes a 67-year-old, vegan male with elevated blood pressure (BP), total cholesterol (TC), LDL, and Lp(a) who underwent a 10-day, medically supervised water-only fast followed by a 6-week SOS-free diet (free of added salt, oil, and sugar). At the 6-week-follow-up visit, he…
- Ultra-processed vegan foods: Healthy alternatives to animal-source foods or avoidable junk?on Октябрь 8, 2024
Animal-source foods (ASFs), namely, meat, milk, eggs, and derived products, are crucial components of a well-balanced diet owing to their contribution with multiple essential nutrients. The benefits of the consumption of ASFs in terms of hedonic responses, emotional well-being, and mood are also widely documented. However, an increasing share of consumers decide to exclude ASFs from their diets. Some of these vegan consumers are inclined to consume so-called “meat” and/or “dairy analogs,” […]
- A systematic review and meta-analysis of functional vitamin B12 status among adult veganson Октябрь 7, 2024
The dietary intake of vitamin B12 among unsupplemented vegans is notably lower compared to both vegetarians and omnivores. Prolonged low intakes of vitamin B12, such as seen in those adhering to a vegan diet, lead to physiological deficiency of vitamin B12 and an elevated risk of B12-related morbidity. However, while serum B12 serves as a conventional biomarker for assessing B12 status, its utility is limited given its sensitivity and specificity in ascribing physiological deficiency of B12 […]
- The Veg∗n Eating Motives Inventory Plus (VEMI+): A measure of health, environment, animal rights, disgust, social, pandemic and zoonotic diseases, and farm workers’ rights motiveson Октябрь 5, 2024
Health, environmental concern, and animal rights are established motives for reduced meat consumption that can be measured by the Vegetarian Eating Motives Inventory (VEMI). This preregistered study aimed to expand the VEMI to include four less-studied motives: disgust, social, concern about zoonotic diseases and pandemics, and concern for workers’ rights. We had three objectives: to combine the seven motives into a comprehensive model, to test if the VEMI+ scales function equivalently across…
Случайные сообщения –
Популярные сообщения -
Последние новости от PubMed, #растительная диета –
- Nutritional and potential health benefits of chufa oil, olive oil, and anhydrous milk fat against gallstone disease in a C57BL/6N mouse modelby Mohsen A Zommara on Октябрь 11, 2024
Dietary lipids play a major role in many diseases, particularly cardiovascular diseases. Recently, the health value of plant oils, particularly heart health, has been recognized. Despite these facts, limited information is available on the potential nutritional and anti-arteriolosclerosis effects of chufa oil, olive oil, and anhydrous milk fat in C57BL/6N mice. In the present study, the effects of olive oil (OO), chufa oil (CO), and anhydrous milk fat (AMF) on 4-week-old C57BL/6N male mice, a…
- Interactions between polygenic risk of obesity and dietary factors on anthropometric outcomes: A systematic review and meta-analysis of observational studiesby Hannah Yang Han on Октябрь 11, 2024
CONCLUSIONS: Current observational evidence suggests a moderating role of overall diet quality in polygenic risk of obesity. Future research should aim to identify genetic loci that interact with dietary exposures on anthropometric outcomes and conduct analyses among diverse ethnic groups.
- Examining the effectiveness of promotional nudges increasing plant-based food choices in a post-secondary education dining hall: a pilot studyby Jennifer Joy Anderson on Октябрь 10, 2024
CONCLUSIONS: The combination of nudges was effective at significantly increasing the selection of plant-based options over meat-based options in a post-secondary dining hall setting.
- Telomere length and 4-year changes in cognitive function in an older Mediterranean population at high risk of cardiovascular diseaseby María Fernández de la Puente on Октябрь 10, 2024
CONCLUSIONS: Longer baseline TL could protect from cognitive decline and be used as a useful biomarker of brain ageing function in an older Mediterranean population at risk of cardiovascular disease and cognitive impairment.
- High Resource Overlap and a Consistently Generalised Pattern of Interactions in a Bat-Flower Network in a Seasonally Dry Landscapeby Constance J Tremlett on Октябрь 10, 2024
Pollination is an ecosystem process that is crucial to maintain biodiversity and ecosystem function. Bats are important pollinators in the tropics and are an integral part of complex plant-pollinator interaction networks. However, network analysis-based approaches are still scarce at the plant species and bat community levels. We used metabarcoding to identify plant taxa present in pollen from fur and faecal samples collected across 1 year from three nectar-feeding bat roosts in central […]
- The co-benefits of climate change mitigation strategies on cardiovascular health: a systematic reviewby Pallavi Shrestha on Октябрь 9, 2024
BACKGROUND: Climate change is a significant threat to global human health and a leading cause of premature death. Global warming, leading to more extreme weather (in particular extreme heat events), and air pollution has been associated with increased cardiovascular disease (CVD) morbidity and mortality. According to the Global Burden of Disease Study 2019, 62% of the deaths attributable to climate change were from CVD. Climate change mitigation is a slow, steady process, and the concept of…